한국생산제조학회 학술지 영문 홈페이지
[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 1, pp.31-36
ISSN: 2508-5107 (Online)
Print publication date 15 Feb 2019
Received 15 Jan 2019 Revised 28 Jan 2019 Accepted 29 Jan 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.1.31

물질 증착 및 체적 수축에 의한 관형 생체적합 세라믹 지지체의 3D 프린팅

김석a, *
3D printing of Hollow Biocompatible Ceramic Scaffold by Material Deposition and Volumetric Shrinkage
Seok Kima, *
aDepartment of Mechanical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Correspondence to: *Tel.: +1-617-253-6401 Fax: +1-617-258-6156 E-mail address: kimseok@mit.edu (Seok Kim).

Abstract

Efficient heat and mass transfer for biological ceramic scaffolds are desirable for a broad array of biological and environmental applications. Porous substrates with thinner cell/pore walls and higher cell/pore density enable faster chemical reaction due to larger surface area and lower relative density. However, manufacturing of well-engineered structures with thin wall and higher cell/pore density remains a challenge. To overcome the limitations associated with the traditional manufacturing process, we study manufacturing-friendly structural design and additive manufacturing processes for biocompatible ceramic microarchitectures with a high surface area to volume ratio by material deposition and volumetric shrinkage. In this study, our idea for achieving efficient ceramic substrates is leveraging on the geometrical benefits of three dimensional (3D) microlattices of thin-walled hollow-tubes realized through proposed additive manufacturing processes.

Keywords:

3D printing, Bio-ceramic, Additive manufacturing, Hollow microlattice, Scaffold

Acknowledgments

이 연구는 2019년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 (No.20000665).

References

  • Ha, S., Kim, J., 2014, Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System, J. Korean Soc. Precis. Eng., 31:9 791-797.
  • Sa, M., Choi, S., Kim, Y., 2018, New Fabrication Method of Bio-Ceramic Scaffolds Based on Mould using a FDM 3D Printer, J. Korean Soc. Precis. Eng., 35:10 957-963.
  • Jo, I., Koh, Y., 2013, Solid Freeform Fabrication Techniques for Producing Porous Bioceramic Scaffolds for Tissue Regeneration, Biomaterials Research, 17:2 082-089.
  • Dorozhkin, S. V., 2010, Bio Ceramics of Calcium Orthophosphates; Review, Biomaterials, 31:11-12 1465-1485.
  • Deshpande, V. S., Fleck, N. A., Ashby, M. F., 2001, Effective Properties of the Octet-truss Lattice Material, Journal of the Mechanics and Physics of Solids, 49:8 1747-1769.
  • Tancogne-Dejean, T., Spierings, A. B., Mohr, D., 2016, Additively- Manufactured Metallic Micro-lattice Matterials for high Specific Energy Absorption Under Static and Dynamic Loading, Acta Materialia, 116 14-28. [https://doi.org/10.1016/j.actamat.2016.05.054]
  • Meza, L. R., Phlipot, G. P., Portela, C. M., Maggi, A., Montemayor, L. C., Comella, A., Kochmann, D. M., Greer, J. R., 2017, Reexamining the Mechanical Property Space of Three-dimensional Lattice Architec- tures, Acta Materialia, 140 424-432. [https://doi.org/10.1016/j.actamat.2017.08.052]
  • Cui, H., Hensleigh, R., Chen, H., Zheng, X., 2018, Additive Manufacturing and Size-dependent Mechanical Properties of Three- dimensional Microarchitected, High-temperature Ceramic Meta- materials, Journal of Materials Research, 33:3 360-371.
  • Maloney, K. J., Roper, C. S., Jacobsen, A. J., Carter, W. B., Valdevit, L., Schaedler, T. A., 2013, Microlattices as Architected Thin Films: Analysis of Mechanical Properties and High Strain Elastic Recovery, APL Materials, 1 022106. [https://doi.org/10.1063/1.4818168]
  • Bauer, J., Schroer, A., Schwaiger, R., Kraft, O., 2016, Approaching Theoretical Strength in Glassy Carbon Nanolattices, Nature Materials, 15 438-443. [https://doi.org/10.1038/nmat4561]
  • Brigo, L., Schmidt, J. E. M., Gandin, A., Michieli, N., Colombo, P., Brusatin, G., 2018, 3D Nanofabrication of SiOC Ceramic Structures, Adv. Sci., 5 1800937. [https://doi.org/10.1002/advs.201800937]
  • Oran, D., Rodriques, S. G., Gao, R., Asano, S., Skylar-Scott, M. A., Chen, F., Tillberg, P. W., Marblestone, A. H., Boyden, E. S., 2018, 3D Nanofabrication by Volumetric Deposition and Controlled Shrinkage of Patterned Scaffolds, Science, 362:6420 1281-1285.
  • Sun, C., Fang, N., Wu, D. M., Zhang, X., 2005, Projection Micro- stereolithography using Digital Micro-mirror Dynamic mask, Sensors and Actuators, A 121:1 113-120.
  • Kido, H.W., Ribeiro D. A., de Oliveira, P., Parizotto, N. A., Camilo, C. C., Fortulan, C. A, Marcantonio, E. Jr., da Silva, V. H., Renno, A. C., 2014, Biocompatibility of a Porous Alumina Ceramic Scaffold Coated with Hydroxyapatite and Bioglass, J. Biomed Mater Res., Part A 102:7 2072-2078.
  • Zazpe, R., Prikryl, J., Gärtnerova, V., Nechvilova, K., Benes, L., Strizik, L., Jäger, A., Bosund, M., Sopha, H., Macak, J. M., 2017, Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers, Langmuir 33:13 3208-3216.
  • Zhou, X., Hou, Y., Lin, J., 2015, A Review on the Processing Accuracy of Two-photon Polymerization, AIP Advances 5 030701. [https://doi.org/10.1063/1.4916886]