한국생산제조학회 학술지 영문 홈페이지
[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 1, pp.37-41
ISSN: 2508-5107 (Online)
Print publication date 15 Feb 2019
Received 26 Dec 2018 Revised 13 Feb 2019 Accepted 13 Feb 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.1.37

실리콘 레이저 소결에서 은 나노 입자의 도핑 효과에 관한 연구

백승현a ; 권승갑a ; Biniti ZamriLiyana Hazawania ; 강인구a ; 강봉철a, *
A Study on Doping Effect of Silver Nanoparticles in Silicon Laser Sintering
Seunghyun Backa ; Seung-Gab Kwona ; Liyana Hazawani Biniti Zamria ; Ingu Kanga ; Bongchul Kanga, *
aDepartment of Mechanical System Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk-do, 39177, Korea

Correspondence to: *Tel.: +82-54-478-7400 Fax: +82-54-478-7319 E-mail address: kbc@kumoh.ac.kr (Bongchul Kang).

Abstract

Silicon is used as an essential material in the electronic and energy industries owing to its high accessibility and inherent semiconducting properties. Typically, silicon devices are produced by top-down chemical etchings, such as anisotropic etching and reactive ion etching, to make micropatterns and surface textures. In addition, doping using thermal diffusion or ion implantation is also required to optimize electrical characteristics. We propose a one-step method for fabricating multi-scale silicon layer based on the concurrent interaction of doping of silver nanoparticles during laser-induced sintering of silicon nanocrystals. The silver-doped silicon patterns were characterized by a uniform distribution and the concentration of dopants was easily adjustable by controlling the relative amount of silver nanoparticles. We expect that this method will contribute to fabricating multi-scale silicon semiconductors without using complicated chemical and vacuum processes.

Keywords:

Silicon process, Multi-scale structure, Silicon nanocrystal, Silver nanoparticle, Laser doping

Acknowledgments

이 연구는 금오공과대학교의 연구비 지원에 의해 수행되었다.

References

  • Rojas, J. P., Torres Sevilla, G. A., Ghoneim, M. T., Inayat, S. B., Ahmed, S. M., Hussain, A. M., Hussain, M. M., 2014, Transformational Silicon Electronics, ACS Nano, 8:2 1468-1474.
  • Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., Nahar, A., 2015, Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation, Renew. Sust. Energ. Rev., 41 284-297. [https://doi.org/10.1016/j.rser.2014.08.046]
  • Lee, H. S., Bae, H. S., Kim, S., Joo, Y. J., Kim, J. O., Noh, J. H., 2016, Electric Power Charging of Silicon Solar Cells using a Laser, J. Korean Soc. Manuf. Technol. Eng., 25:5 362-367.
  • Sun, L., Wang, F., Su, T., Du, H., 2017, Room-Temperature Solution Synthesis of Mesoporous Silicon for Lithium Ion Battery Anodes, ACS Appl. Mater. Interface, 9:46 40386-40393.
  • Lin, V. S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J., Ghadiri, M. R., 1997, A Porous Silicon-based Optical Interferometric Biosensor, Science, 278:5339 840-843.
  • Papet, P., Nichiporuk, O., Kaminski, A., Rozier, Y., Kraiem, J., Lelievre, J. F., Chaumartin, A., Fave, M., Lemiti, M., 2006, Pyramidal Texturing of Silicon Solar Cell With TMAH Chemical Anisotropic Etching, Sol. Energ. Mat. Sol. C., 90:15 2319-2328.
  • Murias, D., Reyes-Betanzo, C., Moreno, M., Torres, A., Itzmoyotl, A., Ambrosio, R., Soriano, M., Lucas, J., i Cabarrocas, P. R., 2012, Black Silicon Formation using Dry Etching for Solar Cells Applications, Mater. Sci. Eng., B, 177:16 1509-1513.
  • Shin, H., Lee, D. K., Cho, Y., 2016, Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method, J. Korean Soc. Manuf. Technol. Eng., 25:1 62-67.
  • Huang, Z., Geyer, N., Werner, P., De Boor, J., Gösele, U., 2011, Metal‐assisted Chemical Etching of Silicon: A review, Adv. Mater., 23:2 285-308.
  • Rothhardt, P., Demberger, C., Wolf, A., Biro, D., 2013, Co-diffusion From APCVD BSG and POCl3 for Industrial N-type Solar Cells, Energy Procedia, 38 305-311. [https://doi.org/10.1016/j.egypro.2013.07.282]
  • Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H. M., Jaraíz, M., Haynes, T. E., 1997, Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-implanted Silicon, J. Appl. Phys., 81:9 6031-6050.
  • Back, S., Kim, S., Kwon, S. G., Park, J. E., Park, S. Y., Kim, J. Y., Kang, B., 2018, Silicon Nanocanyon: One-step Bottom-up Fabrication of Black Silicon Via In-lasing Hydrophobic Self-clustering of Silicon Nanocrystals for Sustainable Optoelectronics, ACS Appl. Mater. Interface, 10:42 36523-36530.
  • Yuan, Z., Huang, W. L., Mukai, K., 2004, Wettability and Reactivity of Molten Silicon With Various Substrates, Appl. Phys. A, 78:4 617-622.
  • Alford, T. L., Thompson, D. C., Mayer, J. W., Theodore, N. D., 2009, Dopant Activation in Ion Implanted Silicon by Microwave Annealing, J. Appl. Phys., 106:11 114902.
  • Chu, P. K., Qin, S., Chan, C., Cheung, N. W., Larson, L. A., 1996, Plasma Immersion Ion Implantation—A Fledgling Technique for Semiconductor Processing, Mater. Sci. Eng. R Rep., 17:6-7 207-280.
  • Neamen, D. A., 1997, Semiconductor Physics and Devices, McGraw-Hill, New York.
  • Shen, L., Liang, Z. C., Liu, C. F., Long, T. J., Wang, D. L., 2014, Optimization of Oxidation Processes to Improve Crystalline Silicon Solar Cell Emitters, AIP Adv., 4:2 027127.
  • Cabrera, E., Olibet, S., Rudolph, D., Vullum, P. E., Kopecek, R., Reinke, D., Herzog, C., Schwaderer, D., Schubert, G., 2015, Impact of Excess Phosphorus Doping and Si Crystalline Defects on Ag Crystallite Nucleation and Growth in Silver Screen‐printed Si Solar Cells, Prog. Photovolt: Res. Appl., 23:3 367-375.