한국생산제조학회 학술지 영문 홈페이지
[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 2, pp.123-131
ISSN: 2508-5107 (Online)
Print publication date 15 Apr 2019
Received 02 Mar 2019 Revised 08 Apr 2019 Accepted 09 Apr 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.2.123

편대비행 두루미의 에너지 절감 메커니즘

김범준a ; 한석영a, *
Energy Saving Mechanism of Red-crowned Crane Flying in V-formation
Beom-jun Kima ; Seog-Young Hana, *
aSchool of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea

Correspondence to: *Tel.: +82-2-2220-0456 Fax: +82-2-2290-2299 E-mail address: syhan@hanyang.ac.kr (Seog-Young Han).

Abstract

A flapping flight mechanism of a Red-crowned crane (Grus japonensis) in migration was estimated using a two-jointed arm model having an unsteady aerodynamic performance. Inverse drag forces were generated and lift forces were enhanced during downstroke. A pair of flapping advantage vortices (FAV) was generated alternatively in the wake. The first fully developed FAV was developed around 6.6 m from the wing tip of the crane ahead. The width of FAV, corresponding to the wing tip spacing was about 0.62 m in the spanwise section. A crane behind saved about 18.5% of energy by using the induced power caused by FAV in V-formation and by changing wing morphology. Phase difference of flapping between the crane ahead and behind was estimated to be around 68.14° to use aerodynamic benefit caused by FAV. Our results can be applied to engineering flying devices.

Keywords:

Computational fluid mechanics, V-formation, Two-jointed arm model, Flapping, Wing tip spacing

References

  • Ellington, C.P., Van Den Berg, C., Willmott, A.P., Thomas, A.L.R., 1996, Leading-edge Vortices in Insect Flight, Nature, 384:6610 626-630. [https://doi.org/10.1038/384626a0]
  • Srygley, R.B., Thomas, A.L.R., 2002, Unconventional Lift-generating Mechanisms in Free-flying Butterflies, Nature, 420:6916 660-664. [https://doi.org/10.1038/nature01223]
  • Dickinson, M., 2008, Animal Locomotion: A New Spin on Bat Flight, Current Biology, 18:11 R468-R470. [https://doi.org/10.1016/j.cub.2008.03.048]
  • Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenström, A., 2008, Leading-Edge Vortex Improves Lift in Slow-Flying Bats, Science, 319:5867 1250-1253. [https://doi.org/10.1126/science.1153019]
  • Videler, J.J., Stamhuis, E.J., Povel, G.D.E., 2004, Leading-edge Vortex Lifts Swifts, Science, 306:5703 1960-1962. [https://doi.org/10.1126/science.1104682]
  • Warrick, D.R., Tobalske, B.W., Powers, D.R., 2005, Aerodynamics of the Hovering Hummingbird, Nature, 435:7045 1094-1097. [https://doi.org/10.1038/nature03647]
  • Poore, S.O., Sanchez-Haiman, A., Goslow Jr, G.E., 1997, Wing Upstroke and the Evolution of Flapping Flight, Nature, 387:6635 799-802. [https://doi.org/10.1038/42930]
  • Badgerow, J.P., 1988, An Analysis of Function in the Formation Flight of Canada Geese, Auk, 105:4 749-755.
  • Hainsworth, F.R., 1987, Precision and Dynamics of Positioning by Canada Geese Flying in Formation, J. Exp. Biol., 128:1 445-462.
  • Hainsworth, F.R., 1989, Wing Movements and Positioning for Aerodynamic Benefit by Canada Geese Flying in Formation, Can. J. Zool., 67:3 585-589. [https://doi.org/10.1139/z89-084]
  • Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P., Jiraskova, S., 2001, Energy Saving in Flight Formation, Nature, 413:6857 697-698. [https://doi.org/10.1038/35099670]
  • Hummel, D., 1983, Aerodynamic Aspects of Formation Flight in Birds, J. Theor. Biol., 104:3 321-347. [https://doi.org/10.1016/0022-5193(83)90110-8]
  • Lissaman, P.B.S., Shollenberger, C.A., 1970, Formation Flight of Birds, Science, 168:3934 1003-1005. [https://doi.org/10.1126/science.168.3934.1003]
  • May, R.M., 1979, Flight Formations in Geese and Other Birds, Nature, 282:5741 778-780. [https://doi.org/10.1038/282778a0]
  • Gould, L.L., Heppner, F., 1974, The Vee Formation of Canada Geese, Auk, 91:3 494-506. [https://doi.org/10.2307/4084469]
  • Heppner, F.H., Convissar, J.L., Moonan Jr., D.E., Anderson, J.G.T., 1985, Visual Angle and Formation Flight in Canada Geese (Branta Canadensis), Auk, 102:1 195-198. [https://doi.org/10.2307/4086847]
  • Andersson, M., Wallander, J., 2004, Kin Selection and Reciprocity in Flight Formation, Behav. Ecol., 15:1 158-162. [https://doi.org/10.1093/beheco/arg109]
  • Hu, H., Clemons, L., Igarashi, H., 2011, An Experimental Study of the Unsteady Vortex Structures in the Wake of a Root-fixed Flapping Wing, Exp. Fluids, 51:2 347-359. [https://doi.org/10.1007/s00348-011-1052-z]
  • Thien, H. P., Moelyadi, M. A., Muhammad, H., 2008, Effects of Leader’s Position and Shape on Aerodynamic Performances of V Flight Formation, arXiv preprint, arXiv:0804.3879. (= Moelyadi, M.A., 2007, Effects of Leader’s Position and Shape on Aerodynamic Performances of V Flight Formation, Proceedings of International Conference on Intelligent Unmanned Systems, 3).
  • Sachs, G., 2005, Aerodynamic Yawing Moment Characteristics of Bird Wings, J. Theor. Biol., 234:4 471-478. [https://doi.org/10.1016/j.jtbi.2004.12.001]
  • Sachs, G., Moelyadi, M.A., 2006, Effect of Slotted Wing Tips on Yawing Moment Characteristics, J. Theor. Biol., 239:1 93-100. [https://doi.org/10.1016/j.jtbi.2005.07.016]
  • Aono, H., Chimakurthi, S.K., Cesnik, C.E.S., Liu, H., Shyy, W., 2009, Computational Modeling of Spanwise Flexibility Effects on Flapping Wing Aerodynamics, In 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 1270. [https://doi.org/10.2514/6.2009-1270]
  • Persson, P.O., Willis, D.J., Peraire, J., 2012, Numerical Simulation of Flapping Wings using a Panel Method and a Highorder Navier-Stokes Solver, Int. J. Numer. Methods Eng., 89:10 1296-1316. [https://doi.org/10.1002/nme.3288]
  • Del Hoyo, J., Elliot, A. and Sargatal, J., 1996, Handbook of the Birds of the World, Lynx Edicions, Barcelona.
  • Liu, T., Kuykendoll, K., Rhew, R., Jones, S., 2004, Avian Wings, In 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2186. [https://doi.org/10.2514/6.2004-2186]
  • Maeng, J. S., Park, J. H., Jang, S. M., Han, S. Y., 2013, A Modelling Approach to Energy Savings of Flying Canada Geese using Computational Fluid Dynamics, J. Theor. Biol., 320, 76-85. [https://doi.org/10.1016/j.jtbi.2012.11.032]
  • Johnsgard, P. A., 1983, Cranes of the World: Japanese Crane (Grus Japonensis), Indiana University Press, Bloomington.
  • Hedrick, T. L., Tobalske, B. W., Biewener, A. A., 2002, Estimates of Circulation and Gait Change based on a Three-dimensional Kinematic Analysis of Flight in Cockatiels (Nymphicus Hollandicus) and Ringed Turtle-doves (Streptopelia Risoria), J. Exp. Biol., 205:10 1389-1409.
  • Tobalske, B. W., Hedrick, T. L., Biewener, A. A., 2003, Wing Kinematics of Avian Flight across Speeds, J. Avian Biol., 34:2 177-184. [https://doi.org/10.1034/j.1600-048X.2003.03006.x]
  • Pennycuick, C. J., 2001, Speeds and Wingbeat Frequencies of Migrating Birds Compared with Calculated Benchmarks, J. Exp. Biol., 204:19 3283-3294.
  • Alerstam, T., 1993, Bird Migration, Cambridge University Press, England.
  • Zipcodezoo Home page, n.d., viewed 11 March 2013, <http://zipcodezoo.com/Animals/G/Grus_jap-onensis, >
  • Oiseaux-birds Home page, n.d., viewed 11 March 2013, <http://www.oiseaux-birds.com/card-red-crowned-crane.html, >
  • Bomphrey, R.J., Lawson, N.J., Harding, N.J., Taylor, G.K., Thomas, A.L.R., 2005, The Aerodynamics of Manduca Sexta: Digital Particle Image Velocimetry Analysis of the Leading-edge Vortex, J. Exp. Biol., 208:6 1079-1094. [https://doi.org/10.1242/jeb.01471]
  • van den Berg, C., Ellington, C.P., 1997, The Three-dimensional Leading-edge Vortex of a ‘Hovering’ Model Hawkmoth, Philos. Trans. R. Soc. London Ser. B: Biol. Sci., 352:1351 329-340. [https://doi.org/10.1098/rstb.1997.0024]
  • Speakman, J. R., Banks, D., 1998, The Function of Flight Formations in Greylag Geese Anser anser; Energy Saving or Orientation?, Ibis, 140:2 280-287. [https://doi.org/10.1111/j.1474-919X.1998.tb04390.x]
  • Kim, B. J., 2015, Energy saving of Red-crowned crane in V-formation using computational fluid dynamics, Thesis of Master of science, Hanyang University, Republic of Korea.
  • Kim, B. J., Kim, S. C., Han, S. Y., 2014, Flow analysis of Goose’s flapping, Proceeding of KSMTE Spring Conference, 126.