한국생산제조학회 학술지 영문 홈페이지
[ Technical Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 2, pp.132-138
ISSN: 2508-5107 (Online)
Print publication date 15 Apr 2019
Received 26 Nov 2018 Revised 14 Jan 2019 Accepted 25 Jan 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.2.132

광픽업 유닛 기반 원자현미경의 Dynamic 모드 측정용 Lock-in Amplifier

Mark A. Cruza ; 송수환b ; 이상헌c, *
Lock-in Amplifier for Dynamic Imaging of OPU Based Atomic Force Microscopy
Mark A. Cruza ; Su-Hwan Songb ; Sang Heon Leec, *
aDepartment of Engineering, Aurora State College of Technology, Sitio Dicaloyungan, Brgy. Zabali Baler, Aurora3200, Philippines
bKorea Institute of Robot & Convergence, 1486-18, Gyungdong-ro, Andong, Gyeongbuk-do, 36728, Korea
cDepartment of Mechanical Design Engineering, Andong National University, 1375, Gyungdong-ro, Andong, Gyeongbuk-do, 36729, Korea

Correspondence to: *Tel.: +82-54-820-5908 Fax: +82-54-820-7913 E-mail address: shlee@andong.ac.kr (Sang Heon Lee).

Abstract

In this paper, we introduce a lock-in amplifier for the dynamic mode operation of atomic force microscopy, based on the optical pickup unit of a DVD. We fabricated a lock-in amplifier, which is fundamentally based on the principle of the dual phase mode, and included an additional enhancement structure to ensure high bandwidth, so that it is capable of supporting high-speed scanning probe microcopy in the future. We performed a basic experiment for performance evaluation and dynamic mode imaging of a standard sample by applying the fabricated lock-in amplifier module to a pre-developed optical pickup unit based atomic force microscopy.

Keywords:

Lock-in amplifier, Displacement sensor, Atomic force microscopy, Scanning probe microscopy, Dynamic imaging mode

Acknowledgments

이 논문은 2016년도 안동대학교 연구비에 의해 연구되었음.

References

  • Binnig, G., Quate, C. F., Gerber, C., 1986, Atomic Force Microscope, Phys. Rev. Lett. 56, 930-933. [https://doi.org/10.1103/PhysRevLett.56.930]
  • Quercioli, F., Tiribilli, B., Ascoli, C., Baschieri, P., Frediani, C., 1999, Monitoring of an Atomic Force Microscope Cantilever with a Compact Disk Pickup, Rev. Sci. Instrum. 70, 3620. [https://doi.org/10.1063/1.1149969]
  • Lee, S. H., Kim, H. C., Jung, K. S., 2011, Atomic Force Microscopy using Optical Pickup Head to Measure Cantilever Displacement, Int. J. Precis. Eng. Manuf. 12, 913-916. [https://doi.org/10.1007/s12541-011-0122-8]
  • Lee, S. H., 2012, High Precision Deflection Measurement of Microcantilever in an Optical Pickup Head based Atomic Force Microscopy, Rev. Sci. Instrum. 83, 113703. [https://doi.org/10.1063/1.4768459]
  • Lee, S. H., 2015, Note: Compact and Light Displacement Sensor for a Precision Measurement System in Large Motion, Rev. Sci. Instrum. 86, 086103. [https://doi.org/10.1063/1.4928528]
  • Eaton, P., West, P., 2010, Atomic Force Microscopy, Oxford University Press, Oxford, UK.
  • Kitchin, C., Counts, L., 1986, RMS to DC Conversion Application Guide, 2nd ed., Analog Devices, Inc., USA.
  • Garcia, R., Proksch, R., 2013, Nanomechanical Mapping of Soft Matter by Bimodal Force Microscopy, Eur. Polym. J. 49, 1897-1906. [https://doi.org/10.1016/j.eurpolymj.2013.03.037]
  • Karvinen, K. S., Moheimani, S. O. R., 2014, A High-Bandwidth Amplitude Estimation Technique for Dynamic Mode Atomic Force Microscopy, Rev. Sci. Instrum. 85, 023707. [https://doi.org/10.1063/1.4865841]
  • Song, S. H., 2016, Design and Control of Optical Pick-up Unit based Probe Head for Atomic Force Microscopy, Master Thesis, Andong National University, Republic of Korea.