한국생산제조학회 학술지 영문 홈페이지

Home

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28 , No. 3

[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 3, pp. 156-165
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Jun 2019
Received 22 Nov 2018 Revised 21 Mar 2019 Accepted 21 May 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.3.156

Robot Operating System 기반 고속 자율주행 모바일 로봇의 개선된 벽면추종 주행방식
한승한a, b ; 최용래c ; 양재필c ; 황형준c ; 김기훈c ; 신주혜b ; 장동영b, c ; 심동하b, c, *

Improved Wall-following Driving for Robot Operating System-based High-speed Autonomous Mobile Robot
Seunghan Hana, b ; Yongrae Choic ; Jaepil Yangc ; Hyungjun Hwangc ; Kihun Kimc ; Juhye Shinb ; Dong-Young Jangb, c ; Dongha Shimb, c, *
aHYUNDAI HEAVY INDUSTRIES HOLDINGS CO., LTD, 102-18, Mabukro, Giheung-gu, Yongin, Gyeonggi-do, 16891, Korea
bDept. of MSDE, SeoulTech, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
cMSDE Programme, Seoultech, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Correspondence to : *Tel.: +82-2-970-7287 Fax: +82-2-974-5388 E-mail address: dongha@seoultech.ac.kr (Dongha Shim).

Funding Information ▼

Abstract

This study demonstrates an -based high-speed autonomous mobile robot using an improved wall-following driving algorithm. The right triangular method is a popular wall-following technique. However, it cannot provide a sufficiently fast response for the abrupt change in wall direction at a corner, resulting in crashes. Therefore, a mixed-mode method is proposed by using the triangle bisection method at a corner to achieve high-speed cornering. The autonomous robot detects a corner using a corner recognition algorithm. The implemented robot employs ROS for system operations and LIDAR sensor to scan wall faces. The maximum measured speed around corners is 2.8 m/s (10.1 km/h), which is 75% higher than that of the triangular method. The robot passes through a right angle corner without crashing at a maximum speed of 1.8 m/s (6.5 km/h). The implemented robot platform and algorithm can be applied and expanded for the development of high-speed autonomous mobile robots.


Keywords: Mobile robot, ROS, High-speed autonomous driving, Corner recognition algorithm, Triangle bisection method

Acknowledgments

이 논문은 2019년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(과제번호 P0002092, 2019년 산업전문인력역량강화사업)과 창의융합 특성화 인재양성사업의 지원(과제번호 N0000717)을 받아 수행된 연구임.


References
1. Wang, C., Meng, L., She, S., Mitchell, I. M., Li, T., Tung, F.,deSilva, C. W., 2017, Autonomous Mobile Robot Navigation in Uneven and Unstructured Indoor Environments, Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference, 109-116.
2. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Schulte, J., 2000, Probabilistic Algorithms and the Interactive Museum Tour-guide Robot Minerva, The International Journal of Robotics Research, 19:11 972-999.
3. Nof, S. Y. (Ed.)., 1999, Handbook of Industrial Robotics (Vol. 1), John Wiley & Sons, Canada.
4. Lacey, G., Dawson-Howe, K. M., 1998, The Application of Robotics to a Mobility Aid for the Elderly Blind, Robotics and Autonomous Systems, 23:4 245-252.
5. Roy, N., Baltus, G., Fox, D., Gemperle, F., Goetz, J., Hirsch, T., Thrun, S., 2000, Towards Personal Service Robots for the Elderly, Workshop on Interactive Robots and Entertainment (WIRE 2000), 25 184.
6. Park, J. H., 2016, viewed 22 May 2016, Amazon and Google’s Choice “Why Logistics Robots”, <http://clomag.co.kr/article/1596>.
7. Youtube, 2017, viewed 22 December 2017, Autonomous Traveling Logistics Robots are Approaching Now, <https://www.youtube.com/watch?v=L-v9h8fqWYo>.
8. Kim, S. S., 2018 viewed 14 November 2018, Annual Average Growth of 36%. Catch the Logistics Robot, <http://biz.heraldcorp.com/view.php?ud=20181114000056>.
9. ICROS, 2018, viewed 07 February 2018, Korea Robot Industry Technology Roadmap, <http://icros.org/UploadData/Editor/EmBody/201706/01E8D3299A4047998792F48599B68947.pdf>.
10. Kim, K. H., Kim, J. H., Choi, Y. H., 2017, Logistics Robot Technology Trends and Future Prospects, Korea Evaluation Institute of Industrial Technology (KEIT), 45-62.
11. Van Turennout, P., Honderd, G., Van Schelven, L. J., 1992, Wall-following Control of a Mobile Robot, Robotics and Automation, 1992 IEEE International Conference, 280-285.
12. Imhof, A., Oetiker, M., Jensen, B., 2012, Wall following for Autonomous Robot Navigation, Applied Robotics for the Power Industry (CARPI), 2012 2nd International Conference, 1-4.
13. Yata, T., Kleeman, L., Yuta, S. I., 1998, Wall Following Using Angle Information Measured by a Single Ultrasonic Transducer, Robotics and Automation, 1998 IEEE International Conference, 2 1590-1596.
14. Dash, T., Swain, R. R., Nayak, T., 2017, Automatic Navigation of Wall-following Mobile Robot Using a Hybrid Metaheuristic Assisted Neural Network, IOS Press, Data Science 0 (0) 1, 1-17.
15. Nepali, M. R., Yadav, N., Prasad, D. A. H., Balasubramaniam, S., 2014, A Novel Wall Following Algorithm for Mobile Robots, International Journal of Robotics and Automation (IJRA), 5:2 15.
16. Fltenth, n.d., viewed 25 March 2018, F1tenth, <http://f1tenth.org/>.
17. Wikipedia, n.d., viewed 25 March 2018, LIDAR, <https://terms.naver.com/entry.nhn?docId=4390070&cid=60217&categoryId=60217>.
18. Autonomoustuff, n.d., viewed 25 March 2018, Hokuyo UST-10LX, <https://www.autonomoustuff.com/wp-content/uploads/2016/07/US T-10LX.pdf>.
19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Ng, A. Y., 2009, ROS: an Open-source Robot Operating System, ICRA workshop on open source software, 5.
20. Github, n.d., viewed 25 March 2018, Hokuyo UST-10LX Driver, <https://github.com/ros-drivers/driver_common>.
21. Github, n.d., viewed 25 March 2018, Razor 9-dof IMU Driver, <https://github.com/lebarsfa/razor-9dof-ahrs>.
22. Seber, G. A., Lee, A. J., 2012, Linear Regression Analysis, John Wiley & Sons, Canada.
23. Kim, Z., 2008, Robust lane Detection and Tracking in Challenging Scenarios, IEEE Transactions on Intelligent Transportation Systems, 9:1 16-26.
24. Skogestad, S., 2003, Simple Analytic Rules for Model Reduction and PID Controller Tuning, Journal of process control, 13:4 291-309.
25. Franklin, G. F., Powell, J. D., Workman, M. L., 1998, Digital Control of Dynamic Systems (Vol. 3), Addison-wesley, New york.
26. Auction, n.d., viewed 05 May 2018, Flexible Ducthose 15cm 10M Bell ows, <http://itempage3.auction.co.kr/DetailView.aspx?ItemNo=A085891188>.
27. ESWeek, 2018, viewed 05 Sepember 2018, ESWeek, <https://www.esweek.org/>.
28. Rathbun, D., Kragelund, S., Pongpunwattana, A., Capozzi, B., 2002, An Evolution Based Path Planning Algorithm for Autonomous Motion of a UAV Through Uncertain Environments, Digital Avionics Systems Conference, 2 8D2-8D2.