한국생산제조학회 학술지 영문 홈페이지

Journal Archive

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 27 , No. 3

[ Special Issue : Seoul Tech Capstone Design ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 27, No. 3, pp. 293-299
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Jun 2018
Received 29 Apr 2018 Revised 12 Jun 2018 Accepted 14 Jun 2018
DOI: https://doi.org/10.7735/ksmte.2018.27.3.293

헬리컬 코일 내 층류유동에서의 마찰 및 열전달 특성에 대한 수치해석 연구
김정우a, * ; 허현a

Numerical Investigation of Friction and Heat Transfer Characteristics of Laminar Flow in Helically Coiled Pipes
Jungwoo Kima, * ; Hyeon Heoa
aDepartment of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Korea
Correspondence to : *Tel.: +82-2-970-6856, Fax: +82-2-974-8270, E-mail address:kimjw@seoultech.ac.kr (Jungwoo Kim).

Funding Information ▼

Abstract

In this study, we have numerically investigated the friction characteristics and heat transfer coefficients for laminar flow in helically coiled pipes. Basic geometric shape parameters of helical coil geometry such as curvature and pitch (or torsion) were taken into account. The range of the geometric shapes considered in this study exceeds the range available in literature. Thus, the present study supplements existing results. The results obtained in this study are, to a certain extent, different from existing correlations and results. Furthermore, our results indicate that the assumption that friction and heat transfer coefficients in helically coiled pipes can be estimated by applying modified diameters to the correlations for curved pipes is not correct.


Keywords: Helically coiled pipes, Curved pipes, Friction coefficient, Heat transfer coefficient

Acknowledgments

이 연구는 서울과학기술대학교 교내 학술연구비 지원으로 수행되었습니다.


References
1. Berger, S. A., Talbot, L., Yao, L. S., 1983, Flow in Curved Pipes, Annu. Rev. Fluid Mech. 15 461-512.
2. Ghobadi, M., Mizychka, Y. S., 2016, A Review of Heat Transfer and Pressure Drop Correlations for Laminar Flow in Curved Circular Ducts, Heat Transfer Eng. 37 815-839.
3. Naphon, P., Wongwises, S., 2006, A Review of Flow and Heat Transfer Characteristics in Curved Pipes, Renewable Sustainable Eng. Rev. 10 463-490.
4. Vashisth, S., Kumar, V., Nigan, K. D. P., 2008, A Review on the Potential Applications of Curved Geometries in Process Industry, Ind. Eng. Chem. Res. 47 3291-3337.
5. Vester, A. K., Orlu, R., Alfredsson, P. H., 2016, Turbulent Flows in Curved Pipes: Recent Advances in Experiments and Simulations, Appl. Mech. Rev. 68 050802.
6. Yoon, D.-H., Park, J. Y., Seul, K.-W., 2012, Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes, KSME J. 36 783-789.
7. Kwag, S.-H., 2013, Numerical Analysis of Turbulent Flows in the Helically Coiled Pipes of Heat Transfer, J. Korean Soc. Marine Eng. 37 905-910.
8. Huttl, T. J., Wagner, C., Friedrich, R., 1999, Navier-Stokes Solutions of Laminar Flows Based on Orthogonal Helical Coordinates, Int. J. Numer. Meth. Fluids.
9. Conte, I. and Peng, X. F., 2008, Numerical Investigations of Laminar Flow in Coiled Pipes, Appl. Thermal Eng. 28 423-432.
10. Gupta, R., Wanchon, R. K., Jafar Ali, T. R. M., 2011, Laminar Flow in Helical Coils: a Parametric Study, Ind. Eng. Chem. Res. 50 1150-1157.
11. De Amicis, J., Cammi, A., Colombo, L. P. M., Colombo, M., Ricotti, M., 2014, Experimental and Numerical Study of the Laminar Flow in Helically Coiled Pipes, Prog. Nucl. Eng. 76 206-215.
12. Canton, J., Orlu, R., Schlatter, P., 2017, Characteristics of the Steady Laminar Incompressible Flow in Toroidal Pipes Covering the Entire Curvature Range, Int. J. Heat Fluid Flow.
13. Austen, D. S., Soliman, H. M., 1988, Laminar Flow and Heat Transfer in Helically Coiled Tubes with Substantial Pitch, Exp. Thermal Fluid Sci. 1 183-194.
14. Jamshidi, N., Farhadi, M., Gangi, D. D., Sedighi, K., 2012, Experimental Analysis of Heat Transfer Enhancement in Shell and Helical Tube Exchangers, Appl. Thermal Eng. 51 644-652.
15. Ko, T. H., Ting, K., 2006, Optimal Reynolds Number for the Fully Developed Laminar Forced Convection in a Helical Coiled Tubes, Energy 31 2142-2152.
16. Salem, M. R., Elshazly, K. M., Sakr, R. Y., Ali, R. K. 2016, Effect of Coil Torsion on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger, J. Thermal Sci. Eng. Appl. 8 011015.
17. Xin, R. C., Ebadian M. A., 1997, The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristics in Helical Pipes, J. Heat Transfer 119 467-473.
18. Yang, G., Dong, Z. F., Ebadian, M. A., 1995, Laminar Forced Convection in a Helicoildal Pipe with Finite Pitch, Int. J. Heat Mass Transfer 38 853-862.
19. Wang, C. Y., 1981, On the Low-Reynolds-Number Flow in a Helical Pipe, J. Fluid Mech. 108 185-194.
20. Germano, M., 1989, The Dean Equation Extended to a Helical Pipe Flow, J. Fluid Mech. 203 289-305.
21. Ito, H., 1969, Laminar Flow in Curved Pipes, Zamm-Z Angew Math Met. 49 653-663.
22. Noorani, A., El Koury, G. K., Schlatter, P., 2013, Evolution of Turbulence Characteristics from Straight to Curved Pipes, Int. J. Heat Fluid Flow 41 16-26.
23. Kalb, C. E., Seader, J. D., 1972, Heat and Mass Transfer Phenomena for Viscous Flow in Curved Circular Tubes, Int. J. Heat Mass Transfer 15 801-817.
24. Ju, H. Huang, Z., Xu, Y., Duan, B., Yu, Y., 2001, Hydraulic Performance of Small Bending Radius Helical-Coil Pipe, J. Nucl. Sci. Tech. 18 826-831.
25. Ciocolini, A., Santini, L., 2006, An Experimental Investigation Regarding the Laminar to Turbulent Flow Transition in Helically Coiled Pipes, Exp. Thermal Fluid Sci. 30 367-380.
26. Janssen, L. A. M., Hoogendoorn, C. J., 1978, Laminar Convective Heat Transfer in Helical Coiled Tubes, Int. J. Heat Mass Transfer 21 1197-1206.