한국생산제조학회 학술지 영문 홈페이지

Journal Archive

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 27 , No. 4

[ Article ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 27, No. 4, pp. 317-328
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Aug 2018
Received 26 Jul 2018 Revised 07 Aug 2018 Accepted 10 Aug 2018
DOI: https://doi.org/10.7735/ksmte.2018.27.4.317

Temperature Prediction Model for Laser Polishing on Aluminum and a Measurement of Polishing Effect
Jong Min Kima ; Hyun Woo Choib ; Min Sung Hongc ; Cheol Soo Leea, *
aSogang University Mechanical Engineering, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
bSogang University Mechanical Engineering Graduated School, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
cAjou University Mechanical Engineering, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea

Correspondence to : *Tel.: +82-2-705-8646 Fax: +82-2-705-7968 E-mail address: cscam@sogang.ac.kr (Cheol Soo Lee).


Abstract

Laser polishing involves the local melting of a product’s surface using a laser beam, thereby improving its surface roughness. Processing parameters such as laser power, feed rate, frequency, and tool path affect laser polishing. The surface temperature changes depending on these parameters, and determines the completeness of the polishing. For example, when a specimen is irradiated using a high-energy laser beam, its temperature increases excessively, leading to extensive melting. In contrast, a low-energy laser beam results in incomplete polishing. Therefore, it is important to be able to predict the surface temperature that can be easily changed by various parameters before conducting the actual experiment. In this study, a temperature prediction model is established to predict the time evolution of the surface temperature of an aluminum specimen irradiated using a laser beam. Furthermore, the feasibility of the prediction model is verified via comparisons with simulation results.


Keywords: Laser polishing, Surface temperature prediction model, Zig-Zag tool path, CAE, Temperature distribution simulation

References
1. Meijer, J., 2004, Laser Beam Machining(LBM) State of the Art and New Opportunities, Journal of Materials Processing Technology, 149:1-3 2-17.
2. Shin, D. S., Lee, J. H., Kim, Y. P., Park, J. K., 2011, Laser Trends of Laser Selective Polishing of Molds, Proceedings of the KSMTE Autumn Conference, 222.
3. Ukar, E., Lamikiz, A., Lopez de Lacalle, L. N., del Pozo, D., Arana, J. L., 2010, Laser Polishing of Tool Steel with CO2 Laser and High-power Diode Laser, International Journal of Machine Tools and Manufacture, 50:1 115-125.
4. John, R., Leila, L., Magda, S., 2015, Thermal Modeling of Laser based Additive Manufacturing Processes within Common Materials, Procedia Manufacturing, 1 238-250.
5. Kim, K. W., Kim, S. H., Cho, H. Y., 2015, Analytic Study on Pulsed-laser Polishing on Surface of NAK80 Die Steel, Journal of KSMTE, 14:6 136-141.
6. Jihong, Y., Shoujin, S., Milan, B., Wenyi, Y., 2010, Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone during Laser Assisted Machining of Ti6Al4V Alloy, Journal of Materials Processing Technology, 210:15 2215-2222.
7. Ukar, E., Lamikiz, A., López de Lacalle, L. N., Martinez, S., Liébana, F., Tabernero., 2010, Thermal Model with Phase Change for Process Parameter Determination in Laser Surface Processing, Physics Procedia, 5 Part B 395-403.
8. Cho, H. Y., Lee, I. H., Kim, K. H., Kim, D. H., Lee, J. H., Shin, D. S., Park, J. K., 2014, Analytical Study of Laser Polishing according to Temperature of Base Metal, Proceedings of the KSMTE Autumn Conference, 147.
9. Annika, R., Edgar, W., Konrad, W., 2009, Laser Polishing of Fused Silica, Proceedings of the fifth international WLT-conference on lasers in manufacturing, 699-702.
10. Pfefferkorn, F. E., Duffie, N. A., Li, X., Vadali, M., Ma, C., 2013, Improving Surface Finish in Pulsed Laser Micro Polishing using Thermocapillary Flow, CIRP Annals-Manufacturing, 62:1 203-206.
11. Chang, C. C., Chen, T. H., Li, T. C., Lin, S. L., Liu, S. H., Lin, J, F., 2016, Influence of Laser Beam Fluence on Surface Quality, Microstructure, Mechanical Properties, and Tribological Results for Laser Polishing of SKD61 Tool Steel, Journal of Materials Processing Technology, 229 22-35.
12. Cho, H. Y., Lee, I. H., Kim, D. B., Lee, G. T., Kim, S. H., Lee, J. H., Kim, Y. P., 2015, Finite Element Analysis for Pulsed Laser Polishing on Die Steel Surface, Proceedings of the KSMTE Autumn Conference, 156.
13. Perry, T. L., Werschmoeller, D., Li, X., Pfefferkorn, F. E., Duffie, N. A., 2009, The Effect of Laser Pulse Duration and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples, Journal of Manufacturing Science and Engineering, 131:3 31002-7.
14. Marinescu, N. I., Ghiculescu, D., Anger, C., 2008, Correlation between Laser Finishing Technological Parameters and Materials Absorption Capacity, International Journal of Material Forming, 1 1359-1362.
15. Tian, W., Chiu, W. K. S., 2004, Temperature Prediction for CO2 Laser Heating of Moving Glass Rods, Optics & Laser Technology, 36:2 131-137
16. Hildebrand, J., Hecht, K., Bliedtner, J., and Müller, H., 2011, Laser Beam Polishing of Quartz Glass Surface, Physics Procedia, 12 452-461.