한국생산제조학회 학술지 영문 홈페이지

Journal Archive

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28 , No. 2

[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 2, pp. 123-131
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Apr 2019
Received 02 Mar 2019 Revised 08 Apr 2019 Accepted 09 Apr 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.2.123

편대비행 두루미의 에너지 절감 메커니즘
김범준a ; 한석영a, *

Energy Saving Mechanism of Red-crowned Crane Flying in V-formation
Beom-jun Kima ; Seog-Young Hana, *
aSchool of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
Correspondence to : *Tel.: +82-2-2220-0456 Fax: +82-2-2290-2299 E-mail address: syhan@hanyang.ac.kr (Seog-Young Han).


Abstract

A flapping flight mechanism of a Red-crowned crane (Grus japonensis) in migration was estimated using a two-jointed arm model having an unsteady aerodynamic performance. Inverse drag forces were generated and lift forces were enhanced during downstroke. A pair of flapping advantage vortices (FAV) was generated alternatively in the wake. The first fully developed FAV was developed around 6.6 m from the wing tip of the crane ahead. The width of FAV, corresponding to the wing tip spacing was about 0.62 m in the spanwise section. A crane behind saved about 18.5% of energy by using the induced power caused by FAV in V-formation and by changing wing morphology. Phase difference of flapping between the crane ahead and behind was estimated to be around 68.14° to use aerodynamic benefit caused by FAV. Our results can be applied to engineering flying devices.


Keywords: Computational fluid mechanics, V-formation, Two-jointed arm model, Flapping, Wing tip spacing

References
1. Ellington, C.P., Van Den Berg, C., Willmott, A.P., Thomas, A.L.R., 1996, Leading-edge Vortices in Insect Flight, Nature, 384:6610 626-630.
2. Srygley, R.B., Thomas, A.L.R., 2002, Unconventional Lift-generating Mechanisms in Free-flying Butterflies, Nature, 420:6916 660-664.
3. Dickinson, M., 2008, Animal Locomotion: A New Spin on Bat Flight, Current Biology, 18:11 R468-R470.
4. Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenström, A., 2008, Leading-Edge Vortex Improves Lift in Slow-Flying Bats, Science, 319:5867 1250-1253.
5. Videler, J.J., Stamhuis, E.J., Povel, G.D.E., 2004, Leading-edge Vortex Lifts Swifts, Science, 306:5703 1960-1962.
6. Warrick, D.R., Tobalske, B.W., Powers, D.R., 2005, Aerodynamics of the Hovering Hummingbird, Nature, 435:7045 1094-1097.
7. Poore, S.O., Sanchez-Haiman, A., Goslow Jr, G.E., 1997, Wing Upstroke and the Evolution of Flapping Flight, Nature, 387:6635 799-802.
8. Badgerow, J.P., 1988, An Analysis of Function in the Formation Flight of Canada Geese, Auk, 105:4 749-755.
9. Hainsworth, F.R., 1987, Precision and Dynamics of Positioning by Canada Geese Flying in Formation, J. Exp. Biol., 128:1 445-462.
10. Hainsworth, F.R., 1989, Wing Movements and Positioning for Aerodynamic Benefit by Canada Geese Flying in Formation, Can. J. Zool., 67:3 585-589.
11. Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P., Jiraskova, S., 2001, Energy Saving in Flight Formation, Nature, 413:6857 697-698.
12. Hummel, D., 1983, Aerodynamic Aspects of Formation Flight in Birds, J. Theor. Biol., 104:3 321-347.
13. Lissaman, P.B.S., Shollenberger, C.A., 1970, Formation Flight of Birds, Science, 168:3934 1003-1005.
14. May, R.M., 1979, Flight Formations in Geese and Other Birds, Nature, 282:5741 778-780.
15. Gould, L.L., Heppner, F., 1974, The Vee Formation of Canada Geese, Auk, 91:3 494-506.
16. Heppner, F.H., Convissar, J.L., Moonan Jr., D.E., Anderson, J.G.T., 1985, Visual Angle and Formation Flight in Canada Geese (Branta Canadensis), Auk, 102:1 195-198.
17. Andersson, M., Wallander, J., 2004, Kin Selection and Reciprocity in Flight Formation, Behav. Ecol., 15:1 158-162.
18. Hu, H., Clemons, L., Igarashi, H., 2011, An Experimental Study of the Unsteady Vortex Structures in the Wake of a Root-fixed Flapping Wing, Exp. Fluids, 51:2 347-359.
19. Thien, H. P., Moelyadi, M. A., Muhammad, H., 2008, Effects of Leader’s Position and Shape on Aerodynamic Performances of V Flight Formation, arXiv preprint, arXiv:0804.3879. (= Moelyadi, M.A., 2007, Effects of Leader’s Position and Shape on Aerodynamic Performances of V Flight Formation, Proceedings of International Conference on Intelligent Unmanned Systems, 3).
20. Sachs, G., 2005, Aerodynamic Yawing Moment Characteristics of Bird Wings, J. Theor. Biol., 234:4 471-478.
21. Sachs, G., Moelyadi, M.A., 2006, Effect of Slotted Wing Tips on Yawing Moment Characteristics, J. Theor. Biol., 239:1 93-100.
22. Aono, H., Chimakurthi, S.K., Cesnik, C.E.S., Liu, H., Shyy, W., 2009, Computational Modeling of Spanwise Flexibility Effects on Flapping Wing Aerodynamics, In 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 1270.
23. Persson, P.O., Willis, D.J., Peraire, J., 2012, Numerical Simulation of Flapping Wings using a Panel Method and a Highorder Navier-Stokes Solver, Int. J. Numer. Methods Eng., 89:10 1296-1316.
24. Del Hoyo, J., Elliot, A. and Sargatal, J., 1996, Handbook of the Birds of the World, Lynx Edicions, Barcelona.
25. Liu, T., Kuykendoll, K., Rhew, R., Jones, S., 2004, Avian Wings, In 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2186.
26. Maeng, J. S., Park, J. H., Jang, S. M., Han, S. Y., 2013, A Modelling Approach to Energy Savings of Flying Canada Geese using Computational Fluid Dynamics, J. Theor. Biol., 320, 76-85.
27. Johnsgard, P. A., 1983, Cranes of the World: Japanese Crane (Grus Japonensis), Indiana University Press, Bloomington.
28. Hedrick, T. L., Tobalske, B. W., Biewener, A. A., 2002, Estimates of Circulation and Gait Change based on a Three-dimensional Kinematic Analysis of Flight in Cockatiels (Nymphicus Hollandicus) and Ringed Turtle-doves (Streptopelia Risoria), J. Exp. Biol., 205:10 1389-1409.
29. Tobalske, B. W., Hedrick, T. L., Biewener, A. A., 2003, Wing Kinematics of Avian Flight across Speeds, J. Avian Biol., 34:2 177-184.
30. Pennycuick, C. J., 2001, Speeds and Wingbeat Frequencies of Migrating Birds Compared with Calculated Benchmarks, J. Exp. Biol., 204:19 3283-3294.
31. Alerstam, T., 1993, Bird Migration, Cambridge University Press, England.
32. Zipcodezoo Home page, n.d., viewed 11 March 2013, <http://zipcodezoo.com/Animals/G/Grus_jap-onensis>
33. Oiseaux-birds Home page, n.d., viewed 11 March 2013, <http://www.oiseaux-birds.com/card-red-crowned-crane.html>
34. Bomphrey, R.J., Lawson, N.J., Harding, N.J., Taylor, G.K., Thomas, A.L.R., 2005, The Aerodynamics of Manduca Sexta: Digital Particle Image Velocimetry Analysis of the Leading-edge Vortex, J. Exp. Biol., 208:6 1079-1094.
35. van den Berg, C., Ellington, C.P., 1997, The Three-dimensional Leading-edge Vortex of a ‘Hovering’ Model Hawkmoth, Philos. Trans. R. Soc. London Ser. B: Biol. Sci., 352:1351 329-340.
36. Speakman, J. R., Banks, D., 1998, The Function of Flight Formations in Greylag Geese Anser anser; Energy Saving or Orientation?, Ibis, 140:2 280-287.
37. Kim, B. J., 2015, Energy saving of Red-crowned crane in V-formation using computational fluid dynamics, Thesis of Master of science, Hanyang University, Republic of Korea.
38. Kim, B. J., Kim, S. C., Han, S. Y., 2014, Flow analysis of Goose’s flapping, Proceeding of KSMTE Spring Conference, 126.