한국생산제조학회 학술지 영문 홈페이지

Journal Archive

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28 , No. 3

[ Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 3, pp. 166-175
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Jun 2019
Received 05 Apr 2019 Revised 09 May 2019 Accepted 28 May 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.3.166

하이드로겔과 미세유체채널을 이용한 단속적 약물 공급소자
장웅기a ; 서영호b ; 김병희a, b, *

Intermittent Drug Supply Device Using Hydrogel and Microfluidic Channel
Woong Ki Janga ; Young Ho Seob ; Byeong Hee Kima, b, *
aKangwon Institute of Inclusive Technology, Kangwon National University, 1, Kangwondaehakgil, Chunchon, Gangwon, 24341, Korea
bDivision of Mechanical & Biomedical, Mechatronics, and Materials Science and Engineering, Kangwon National University, 1, Kangwondaehakgil, Chunchon, Gangwon, 24341, Korea
Correspondence to : *Tel.: +82-33-250-6374 Fax: +82-33-259-5548 E-mail address: kbh@kangwon.ac.kr (Byeong Hee Kim).

Funding Information ▼

Abstract

In this study, we propose a device that uses the expansive force of a hydrogel to inject a small amount of a drug over a long duration. The proposed microfluidic drug injection device has a hydrogel in the injection chamber. The expansive force of the hydrogel provides the injection pressure to control the drug injection period, time required for supplying water to the hydrogel, and hydrogel expansion time. The use of a hydrogel is difficult due to its powdery texture. Hence, the hydrogel was mixed with polydimethylsiloxane (PDMS) and converted into hydrogel disks. A stop valve was also designed to generate flow resistance in the microfluidic device, which supplies water to the hydrogel. The drug injection intermittently supplied the hydrogel’s expansive force along with the drug, with ~2.1 ㎕ of the drug being administered. Results demonstrate that the hydrogel expansive force can be used to achieve intermittent drug supply.


Keywords: Drug delivery dystem, Infusion pump, Hydrogel, Micro channel, Time delayed micro shape

Acknowledgments

본 연구는 2015년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2015R1A5A1037668)이며, 2019년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0002092, 2019년 산업전문인력역량강화사업).


References
1. Kim E. J., 2009, Drug Delivery System and Utilization Technology, Biotech Policy Research Center, Republic of Korea.
2. Herrmann, G., Kim, B. H., 2008, Research Trends and Technology Prospects of Drug Delivery System, Korean Society for Biochemistry and Molecular Biology, Republic of Korea.
3. Korean Intellectual Property Office, 2002, 2002 New Technology Trends Survey Report-Drug Delivery System, Korean Intellectual Property Office, Republic of Korea.
4. Gwon, I. C., 2010, Drug Transfer Technology Using Nanoparticles, News & Information for Chemical Engineers, 28:2 177-182.
5. Han, S, G., 2008, Development Status and Prospect of Drug Transfer System, Biotech Policy Research Center, Republic of Korea.
6. Im, K. B., 2010, Technical Trends of Drug Transfer System, News & Information for Chemical Engineers, 25:2 170-170.
7. Bronaugh, R. L., Maibach, H. I., 1999, Percutaneous Absorption: Drugs Cosmetics-Mechanisms-Methodology, Marcel Dekker, New York.
8. Touitou, E., 2002, Drug Delivery Across the Skin, Expert Opin. Biol. Ther. 2 723-733.
9. Barry, B., 2003, A. Williams, Penetration Enhancers, Adv. Drug Deliv. Rev. 56 603-618.
10. Cevc, G., 2004, Lipid Vesicles and Other Colloids as Drug Carriers on the Skin, Adv. Drug Deliv. Rev., 56 675-711.
11. Kalia, R. Y., 2005, Guy, Iontophoresis, Adv. Drug Deliv. Rev., (in press).
12. Preat, V., Vanbever, R., 2004, Skin Electroporation for Transdermal and Topical Delivery, Adv. Drug Deliv. Rev., 56 659-674.
13. Kang, G. S., Kim, M. J., Kim, M. S., Lee, H. B., 2007, Recent Advances in Microneedles for Transdermal Delivery Systems, Theories and Applications of Chem. Eng., 13:2 2602.
14. Doukas, A., 2004, Transdermal Delivery with a Pressure Wave, Adv. Drug Deliv. Rev., 56 559-579.
15. Mitragotri, S., Kost, J., 2004, Low-Frequency Sonophoresis: a Review, Adv. Drug Deliv. Rev., 56 589-601.
16. Prausnitz, M. R., 2004, Microneedles for Transdermal Drug Delivery, Advanced Drug Delivery Reviews., 56 581-587.
17. Wijaya, M., Davis, S. P., Holiday, N. R., Wang, J., Gill, H. S., Prausnitz, M. R., 2005, Transdermal Delivery of Insulin Using Microneedles in Vivo, Pharmaceutical Research., 21:6 947-952.
18. Jing, J., Francis, E. H., Tay, Jianmin, M., Ciprian, I., 2006, Microfabricated Microneedle with Porous Tip for Drug Delivery, J. Micromech. Microeng., 16:5 958-964.
19. Bal, S. M., Caussina, J., Pavel, S., Bouwstra, J. A., 2008, In Vivo Assessment of Safety of Microneedle Arrays in Human Skin, European Journal of Pharmaceutical Sciences., 35:3 193-202.
20. Paik, S. J., Kim, S. H., Wang, P. C., Wester, B. A., Allen, A. G., 2010, Dissolvable-Tipped, Drug-Reservoir Interated Microneedle Array for Transdermal Drug Delivery, 2010 IEEE 23rd International Conference., 312-315.
21. Escobar-Chávez, J. J., Bonilla-Martínez, D., Villegas-González, M.A., Molina-Trinidad, E., Casas-Alancaster N., Revilla-V, L. A., 2010, Microneedles: A Valuable Physical Enhancer to Increase Transdermal Drug Delivery, The Journal of Clinical Pharmacology., 51:7 964-977.
22. Bodhale, D. W., Nisar, A., Afzulpurkar, N., 2010, Structural and Microfluidic Analysis of Hollow Side-Open Polymeric Microneedles for Transdermal Drug Delivery Applications, Microfluid Nanofluid., 8:3 373-392.
23. Henry, S., Mcallister, D. V., Allen, M.G., Prausnitz, M. R., 1998, Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery, Journal of Pharmaceutical Sciences., 87:8 922-925.
24. Nuxoll, E. E., Siegel, R. A., 2009, BioMEMS Devices for Drug Delivery, IEEE engineering in medicine and biology magazine., 28:1 31-39.
25. Parka, J. H., Allenb, M. G., Prausnitz, M. R., 2005, Biodegradable Polymer Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery, Journal of Controlled Release., 104:1 51-66.
26. Martanto, W., Moore, J. S., Couse, T., and Prausnitz, M. R., 2006, Mechanism of Fluid Infusion During Microneedle Insertion and Retraction, Journal of Controlled Release., 112:3 357-361.
27. Lee, J. W., Park, J. H., Prausnitz, M. R., 2008, Dissolving Microneedles for Transdermal Drug Delivery, Biomaterials., 29:13 2113-2124.
28. Sullivan, S. P., Murthy, N., Prausnitz, M. R., 2008, Minimally Invasive Protein Delivery with Rapidly Dissolving Polymer Microneedles, Adv. Mater., 20:5 933-938.
29. Sullivan, S.P., Koutsonanos, D. G., Martin, M. P., Lee, J. W., Zarnitsyn, V., Choi, S. O., Murthy, N., Compans, R. W., Skountzou, I., Prausnitz, M. R., 2010, Dissolving Polymer Microneedle Patches for Influenza Vaccination, Nature Medicine., 16:8 915.
30. Kim, M. Y., Jung, B. Y., Park, J. H., 2012, Hydrogel Swelling as a Trigger to Release Biodegradable Polymer Microneedles in Skin, Biomaterials., 33:2 668-678.
31. Chu, L. Y., Choi, S. O., Prausnitz, M. R., 2010, Fabrication of Dissolving Polymer Microneedles for Controlled Drug Encapsulation and Delivery: Bubble and Pedestal Microneedle Designs, Journal of Phaharmaceutical Sciences., 99:10 4428-4238.
32. Chen, B., Wei, J., Iliescu, C., 2010, Sonophoretic Enhanced Microneedles Array (SEMA)—Improving the Efficiency of Transdermal Drug Delivery, Sensors and Actuators B., 145:1 54-60.
33. McAllister, D. V., Allen, M. G., Prausnitz, M. R., 2002, Microfabricated Microneedles for Gene and Grug Delivery, Annu. Rev. Biomed. En., 2:1 289-313.
34. Andersson. H., Wijngaart, W., Griss, P., Niklaus, F., Stemme, G., 2001, Hydrophobic Valves of Plasma Deposited Octafluorocyclobutane in Drie Channels, Sens Actuators B., 75:1-2 136-141.
35. Lu, C. M., Xie, Y. B., Yang, Y., Cheng, M. M. C., Koh, C. G., Bai, Y. L., Lee, L. J., 2007, New Valve and Bonding Designs for Microfluidic Biochipscontaining Proteins, Analytical Chem., 79:3 994-1001.
36. Stemme, E., Stemme, G., 1993, A Valveless Diffuser/Nnozzle-Based Fluid Pump, Sens Actuators A Phys., 39:2 159-167.
37. Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C., Jo, B., 2000, Functional Hydrogel Structures for Autonomous Flowcontrol Inside Microfluidic Channels, Nature., 404:6778 588-590.
38. Man, P. F., Mastrangelo, C. H., Burns, M. A., Burk, D. T. 1998, Microfabricated Capillarity-Driven Stop Valve and Sample Injector., In: Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems., 45-50.
39. Leu, T. S., Chang, P. Y., 2004, Pressure Barrier of Capillary Stop Valves in Micro Sample Separators, Sens Actuators A Phys., 115:2-3 508-515.
40. Siljegovic, V., Milicevic, N., and Griss, P., 2005, Passive, Programmable Flow Control in Capillary Force Driven Microfluidic Networks, In the 13th International Conference on Solid-State Sensors. Actuators and Microsystems. Digest of Technical Papers., 2 1565-1568.
41. Cho, H., Kim, H. Y., Kang, J.Y., Kim, T.S., 2007, HowtheCapillary Burst Microvalve Works, J Colloid Interface Sci., 306:2 379-385.
42. Chen, J. M., Huang, P. C., Lin, M. G. 2005, Analysis and Experiment of Capillary Valves for Microfluidics on a Rotating Disk., Microfluid Nanofluid Microfluidics and Nanofluidics., 4:5 427-437.