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1. Introduction

Topological shape optimization is particularly efficient 

because it can perform topology and shape optimizations 

simultaneously. Topology optimization operates by finding an 

optimized layout in the specified design domain under the 

required conditions, such as boundary and loading conditions. 

Shape optimization is then used to obtain an optimal shape 

using design variables indicating the shape of the structure. 

Sethian and Wiegmann[1] first developed a topological shape 

optimization method. They proposed the level set method 

(LSM) for the boundary design of elastic structures with 

topological changes. Bourdin and Chambolle[2] developed the 

phase field method (PFM) for topological shape optimization. 

The optimized structure based on the PFM is represented as 

a subset of a reference domain, and the complement of the 

subset is made of two other phases, the void and a fictitious 

liquid that exerts a pressure force on its interface with a solid 

structure. Due to the substantial performance of the LSM and 

the PFM, the methods are employed for various engineering 

problems for topological shape optimization[1-7].

When solving linear static stiffness problems, it is usually 

assumed that the material of a structure is linear and 

deformation is small[8]. However, when an applied load or 

deformation of the structure is very large, geometric 

nonlinearity may occur. Also, when a structure is made with 

nonlinear material, material nonlinearity may occur, and 

sometimes these two kinds of nonlinearities can occur 

simultaneously[8]. Therefore, the above nonlinearities should 

be considered in order to optimize the nonlinear structures 
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appropriately.

Kwak and Cho[9] developed the topological shape optimi-  

zation method for geometrically nonlinear structures in total 

Lagrangian formulation using the LSM. This method 

minimizes the compliance through the variations of implicit 

boundary, satisfying an allowable volume of Lagrangian 

derived from an optimality condition. Total Lagrangian 

formulation was employed to obtain the response of 

geometrically nonlinear structures, and the Newton-Raphson 

iterative scheme was used to solve the nonlinear systems. Cho 

et al.[10] employed the topological derivatives to perform the 

topological shape optimization of geometrically nonlinear 

structures based on the LSM. This method can create new 

holes whenever and wherever necessary during the optimi-  

zation and minimize the compliance using both shape and 

topological variations simultaneously. Also, Ha and Cho[11] 

proposed an unstructured mesh for the topological shape 

optimization method of geometrically nonlinear structures 

using the LSM. The method can be relieved by the con-  

vergence difficulty because homogeneous material property 

and actual boundary are employed.

Penzler et al.[12] developed the PFM for topological shape 

optimization in nonlinear elasticity. In the research, the geo-  

metrically nonlinear deformations and nonlinear hyperelastic 

constitutive laws were considered. The resulting nonlinear 

elastic optimization problem differs significantly from 

classical optimization in linearized elasticity. Myśliński and 

Koniarski[13] combined the LSM and the PFM to consider the 

topological shape optimization problem for the elastic contact 

problem with prescribed friction condition numerically. The 

obtained numerical results indicated that the method allows 

for significant improvements in the solution from one iteration 

to the next, and is more efficient than the classical LSM.

To maximize the structural stiffness considering the non-  

linearities, the displacement or compliance is naturally 

selected as an objective function. However, in the nonlinear 

static stiffness problems, minimization of the compliance may 

result in degenerated structures that can only support the 

maximum load for which they are designed. To avoid this 

problem and make sure that the structure is stable for any load 

up to the maximum design load, the complementary work as 

the objective function was suggested[8].

Recently, Karaboga and Basturk[14] verified that the artificial 

bee colony algorithm (ABCA), which is based on swarms of 

honey bees searching for food sources, converges to a global 

optimum more rapidly than other optimization algorithms 

such as the differential evolution (DE) algorithm[15], particle 

swarm optimization (PSO) algorithm[16] and evolutionary 

algorithm (EA)[17]. Due to its outstanding performance, the 

ABCA has been employed for various engineering problems 

such as the inverse kinematics problem of robot arms[18], layer 

optimization of symmetrical laminated composite plates[19], 

structural shape optimization for static stiffness problems[20,21] 

and structural topology optimization for linear and nonlinear 

static and dynamic stiffness problems[22-24].

The existing methods for topological shape optimization 

such as the LSM and the PFM have some problems. They 

cannot create new holes naturally without the initial holes or 

topological sensitivity[3,6,25]. Also, the convergence rates of the 

existing methods are slow because the geometry can only be 

evolved from an existing boundary region. Therefore, a new 

method for topological shape optimization based on the 

ABCA is suggested.

In this study, a topological shape optimization scheme for 

the nonlinear structures considering geometrically, materially 

and both geometrically and materially nonlinear cases using 

the ABCA is suggested. Since the suggested ABCA can create 

new holes in the structure naturally, unlike the LSM and the 

PFM, it is expected that the ABCA will be efficient for 

solving nonlinear problems as well as linear problems. To 

perform the topological shape optimization of nonlinear 

problems, a variable called “Improved Boundary Element 

Indicator (IBEI)” is newly introduced to define the boundary 

elements in each iteration. Finally, in order to examine the 

performance of the proposed method, numerical examples of 

typical nonlinear problems are provided. These examples 

compare the discrete LSM[25], which is the existing method 

for topological shape optimization, ABCA for topology opti-  

mization[22-24], and ABCA for topological shape optimization, 

which is the suggested method in this paper.

2. Formulation for Nonlinear Topological 

Shape Optimization

2.1 Problem Statement

In this paper, the complementary work is chosen as the 

objective function for topological shape optimization of 

nonlinear structures. The problem’s statement is as follows:
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where W
C is the complementary work, l is the total number 

of load increments, T is the transpose, fi is the applied load 

vector of the i-th load increment, ui is the nodal displacement 

vector of the i-th load increment, V* is the prescribed volume 

constraint, N is the total number of elements in the design 

domain, Ve is the volume of the e-th element, χe is the binary 

design variable of e-th element, and χmin is the sufficiently 

small value of the χe to avoid singularity.

2.2 Sensitivity Number Using Waggle Index Update Rule

Kaveh et al.[26] employed the pheromone that is the 

intermediate variable for topology optimization using the ant 

colony optimization (ACO) algorithm. In the ABCA for 

topology optimization[22-24], the waggle index update rule, 

which is inspired by the research of Kaveh et al.[26], was also 

applied to the calculation of the sensitivity number. In this 

study, the waggle index update rule is also employed to obtain 

the sensitivity number. The waggle index update rule is 

expressed as:

( )1 1k k k

e e e
I I eδ δ−= × + − × (2)

where Ie is the waggle index (the amount of information 

shared on the e-th element), ee is the employed bee 

presence/absence, k is the current iteration number, and δ is 

the coefficient of the waggle index update.

To obtain the sensitivity number, an adjoint equation is 

developed by using a series of vectors of Lagrangian 

multipliers λi into the W
C in Eq. (1) as[8]:
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where ri is the residual force of i-th load increment.

ri + ri-1 is as follows:

int int
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0
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where fi
int is the internal load of the i-th load increment.

The sensitivity of Eq. (3) can be obtained as follows:
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If the increment of the load is small enough, the relationship 

between the load and displacement can be assumed to be 

linear, where ∂ri /∂ui and ∂ri-1 /∂ui-1 can be expressed using 

the tangential stiffness matrix Ki
t at the i-th load increment as 

follows:
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The sensitivity of the complementary work can be rewritten 

as Eq. (7) by applying Eq. (6) to Eq. (5).
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In order to remove the (∂ui /∂χe +∂ui-1 /∂χe) term, the 

Lagrangian multiplier is calculated as follows:
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1i i i
λ −= −u u (9)

Based on Eqs. (8) and (9), the sensitivity of the complementary 

work can be expressed as:
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In the case of material nonlinearity, a general relationship 

between the effective stress and the effective strain can be 

represented as follows:

( )eff eff

c
Kσ ε= Φ (11)

where σ eff is the effective stress, Kc is the constant related to 
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the elastic modulus, (Φ εeff) is the general function representing 

the material characteristics, and εeff is the effective strain.

In the power-low model, (Φ εeff) is expressed using the 

work-hardening exponent m, and the material interpolation 

scheme is introduced in order to consider solid and void 

elements. The effective stress σ eff(χe) of each element can be 

written as follows:

( )eff eff ,1( ) p

e e c
Kσ χ χ ε= Φ (12)

where p is the penalty factor, εeff,1 is the effective strain of 

solid element.

Internal load for e-th element becomes as follows:

int int,1

1

N
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where fe
int is the internal load vector for e-th element, Ce is 

the matrix which transforms the nodal force vector of an 

element to the global nodal force vector, f int,1 is the internal 

load vector of solid element.

Substituting Eq. (13) into Eq. (10), the following equation 

can be obtained as:
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where fe,i
int is the internal load vector of solid element in the 

i-th load increment.

The (-) sign indicates that the complementary work is 

reduced as the design variable χe is increased. In order to 

minimize the complementary work, the sensitivity number of 

the e-th element can be represented as follows:
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where Ee is the final elastic and plastic strain energy of the 

e-th element.

To perform the ABCA for topological shape optimization, 

the waggle index, which is the intermediate variable, should 

be used for calculation of the sensitivity number. Therefore, 

the sensitivity number based on the waggle index update rule 

is as follows:

( )1

min
  0 1p

e e e e
I E I Iα −= < ≤ ≤ (16)

where Imin is a sufficiently small value of the Ie to avoid 

singularity.

2.3 Improved Boundary Element Indicator

In order to perform topology and shape optimizations 

simultaneously (topological shape optimization), the boundary 

- including the creation of new holes in the structure - should 

be optimized. To define the boundary elements of the 

structure, the boundary element indicator (BEI) is employed. 

Once a structure is given as shown in Fig. 1(a), the boundary 

elements that are locations of the searching domain are 

defined using BEI as shown in Fig. 1(b). In this figure, the 

thick line is the boundary line, which is defined by the 

interface of solid and void elements. The black and white 

elements are solid and void elements respectively, and the 

grey elements are boundary elements. Both solid and void 

elements that are on each layer at both sides of the boundary 

line are defined as the boundary elements.

If the locations of boundary elements are defined conti-  

nuously using the BEI in each iteration, holes can be created 

naturally and an approximate topology can be made. After an 

approximate topology is made, shape optimization is only 

(a) Given structure

(b) Definition of the boundary 

elements based on the BEI

(c) Definition of the boundary 

elements based on the IBEI

Fig. 1 Definition of the boundary elements based on the BEI 

and the IBEI
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carried out because further new holes in the structure cannot 

be created. Through the above procedure, the topological 

shape optimization can be carried out, although only the shape 

optimization is performed.

When solving the linear problems using the BEI, the 

solutions are well searched, but it was verified through 

numerical experiments that nonlinear problems cannot be 

solved because the narrow searching domain is not sufficient 

to find a solution. In order to expand the searching domain, 

this paper suggests IBEI.

The difference between the BEI and IBEI is just the number 

of defined layers. Specifically, while the boundary elements 

based on the BEI are defined on each layer at both sides of 

the boundary line, those based on the IBEI are defined on the 

double layers at both sides of the boundary line. Fig. 1(c) 

shows the defined boundary elements based on the IBEI 

instead of the BEI. The IBEI is expressed as the following 

equation:

( )
( )

1 if it is a boundary element

1 if it is not a boundary element
e

IBEI
+= − (17)

where IBEIe is the improved boundary element indicator of 

the e-th element.

Table 1 represents the optimized designs of the ABCA 

for topological shape optimization based on both BEI and 

IBEI. From the table, it can be found that both linear and 

geometrically nonlinear problems can be well solved using 

the IBEI. Hence, it can be concluded that the IBEI is 

applicable to various problems, such as linear and nonlinear 

problems.

3. ABCA for Nonlinear Topological 

Shape Optimization

The ABCA is applied to the topological shape optimization 

of nonlinear structures in this study. The procedure for 

topological shape optimization of nonlinear structures is 

suggested as:

Step 1: Establish the design domain based on rectangular 

finite elements and initial parameters for topological shape 

optimization.

Step 2: Perform finite element analysis (FEA) for the initial 

design and calculate the sensitivity number e using Eq. (16).α
Step 3: Calculate the temporary fitness value temp_fite 

using the following equation.

( )

( ) ( )
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if  0

1_

1 if  0

e

ee

e e
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abs

α
α

α α

 ≥ += 
 + < (18)

where abs(x) is the absolute value of x.

Step 4: Perform the employed bee phase for the topological 

shape optimization. In this step, the boundary elements should 

be updated continuously whenever a temporary candidate 

solution is found using Eq. (19). By using the equation, the 

temp_fite is divided into two groups. If the fitness value fite 

is a positive value, the e-th element is a boundary element. 

Otherwise, the e-th element is not a boundary element. After 

that, determine the xi, xk (locations of initial solutions) and vi 

(location of a temporary candidate solution) based on Eq. 

(20). In the equation, xi, xk and vi should be a positive value 

for topological shape optimization.

_
e e e

fit IBEI temp fit= × (19)
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> (20)

where fite is the fitness value of e-th element, int[x] is the 

integer number of x, rand[a,b] is the random number between 

a and b, sum[x] is the summation of x.

Step 5: Perform the onlooker bee phase for topological 

shape optimization. In this step, the IBEIe and fite should be 

also updated using Eqs. (17) and (19), as in Step 4. Also, the 

Table 1 Comparison of optimized designs using the suggested 

method based on both BEI and IBEI

Linear

/ Nonlinear 

case

Suggested method

based on the BEI

Suggested method

based on the IBEI

Linear
Iter. : 39

Obj. : 1.7144 J

Iter. : 40

Obj. : 1.7107 J

Geometrically

nonlinear Iter. : 45

Obj. : 1.6081 J

Iter. : 48

Obj. : 1.5873 J
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xi', xk' (locations of newly selected initial solutions) and vi' 

(location of a newly selected temporary candidate solution) 

are searched based on Eq. (21).
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[ ] [ ]
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where pe is the probability value of e-th element.

Step 6: Perform the scout bee phase. Specify the elements 

occupied and abandoned by employed bees (solid and void 

elements) using the fitness value of each element. After that, 

the locations of solid and void elements should be determined 

based on the prescribed volume constraint because the number 

of bees is constant during the optimization process in the 

standard ABCA[14,22-24]. Then, a simple averaging scheme 

based on a limit value[22-24] is applied to avoid local minima 

using Eq. (22).

( )
( )

( )

1

if    
2

if    

   1, 2,3,

k k

e e
k

e

k

e

fit fit
k limit value step

fit

fit k limit value step

limit value step limit value step

− +
≠= 

 =

= × = ⋯
(22)

where limit value is a predetermined value. The limit value 

is set to between 10 and 15 for topology optimization[22-24]. 

The value is set to between 5 and 10 for topological shape 

optimization. This is because solid elements can move in the 

defined boundary elements, which makes the convergence rate 

of the method slower. Therefore, the scheme should be 

performed for topological shape optimization more often than 

that of topology optimization[22-24].

Step 7: Obtain an updated candidate solution through Steps 

4 to 6. The waggle index update rule is then applied using 

Eq. (2). When k becomes between 15 and 20, δ in Eq. (2) 

should become 0 since the waggle index Ii (that is, the trace 

of previous locations of elements occupied by employed bees) 

encourages the employed bee elements to try to move to the 

no boundary region. Therefore, employed bee ei (that is, the 

present location of elements occupied by employed bees) is 

only used to calculate the sensitivity numbers from the 

prescribed iteration number.

Step 8: Calculate the objective function based on the 

obtained candidate solution, and calculate the sensitivity 

number based on the Ii. After calculating the sensitivity 

number, the mesh-independency filter scheme[8,22-24] using Eq. 

(23) is employed to prevent a checkerboard pattern,

( )

( )

( ) ( )

1

1

min

,  

  1, 2, ,

M

en n

n

e M

en

n

en en

w r

w r

w r r r n M

α
α =

=

=

= − =





⋯

(23)

where M is the total number of nodes in the sub-domain, 

w(ren) is the linear weight factor, ren is the distance between 

the center of the e-th element and the n-th node, αn is the 

sensitivity number of n-th node, and rmin is the length scale 

parameter.

Step 9: Check whether the updated candidate solution has 

converged or not using Eq. (24).

Fig. 2 Flow chart of the suggested ABCA
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where τ is the allowable convergence tolerance, W
C is the 

complementary work, N ' is the integer number resulting in a 

converged objective function. In this paper, τ is set to 0.001, 

and N ' is set to 5 in order to make the change in the objective 

function sufficiently small over the last 10 iterations.

If the solution is not converged, go to Step 3 and repeat 

the above steps until the solution is converged[8,22-24]. The flow 

chart of the proposed method is shown in Fig. 2.

4. Numerical Examples

In order to examine the performance of the ABCA for 

topological shape optimization, which is the proposed method, 

numerical examples are provided to compare with the discrete 

LSM[25] and the ABCA for topology optimization[23]. In this 

paper, three kinds of nonlinear cases, such as the geometri-  

cally nonlinear case, the materially nonlinear case, and both 

geometrically and materially nonlinear cases are considered. 

Since the ABCA is the stochastic method, each example using 

the ABCAs is performed for 5 runs. Objective functions of 

the ABCAs are mean values of 5 runs and standard deviations 

are provided.

4.1 Simply Supported Beam

A simply supported beam measuring 0.8 m × 0.2 m × 0.001 

m and subjected to 200 N at the center of the top surface is 

shown in Fig. 3. The design domain is divided into 160 × 40 

by rectangular finite elements. The material properties are 

assumed to have Young's modulus of 1 GPa, Poisson's ratio 

of 0.3 and yield strength of 2 MPa. The materially nonlinear 

model is assumed to be a bilinear material and the tangent 

elastic modulus is 0.2 GPa. The limit value is set to 5, the 

δ is set to 0.8, and the rmin is set to between 1.5 and 3.0. 

The objective of this problem is to determine the topological 

shape design having the minimum value of complementary 

work while satisfying a volume constraint of 20%.

The optimized designs of the discrete LSM[25], the ABCA 

for topology optimizaton[23] and the ABCA for topological 

shape optimization are shown in Table 2. These results show 

that optimal designs based on the discrete LSM, the ABCA for 

topology optimization and the ABCA for topological shape 

optimization are almost equal, and the convergence rate of the 

ABCA for topological shape optimization is the fastest among 

Fig. 3 Problem definition of the simply supported beam

Table 2 Comparison of optimized designs using the discrete 

LSM and the ABCAs for the simply supported beam

Linear

/ Nonlinear

case

Discrete 

LSM[25]

ABCA for

topology 

optimization[23]

ABCA for 

topological 

shape 

optimization

Linear Iter.: 130

Obj.: 1.7099 J

Iter.: 49

Obj.: 1.7283 J

Stdev.: 0.0119

Iter.: 40

Obj.: 1.7107 J

Stdev.: 0.0103

Geometrically

nonlinear Iter.: 143

Obj.: 1.5746 J

Iter.: 48

Obj.: 1.5963 J

Stdev.: 0.0110

Iter.: 48

Obj.: 1.5873 J

Stdev.: 0.0108

Materially

nonlinear Iter.: 112

Obj.: 8.3470 J

Iter.: 43

Obj.: 8.4077 J

Stdev.: 0.0138

Iter.: 35

Obj.: 8.3512 J

Stdev.: 0.0119

Both

geometrically

and 

materially

nonlinear

Iter.: 149

Obj.: 5.5300 J

Iter.: 46

Obj.: 5.6112 J

Stdev.: 0.0122

Iter.: 43

Obj.: 5.5793 J

Stdev.: 0.0106

Fig. 4 Iteration history of the complementary work for the simply 

supported beam
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the methods. Fig. 4 shows the iteration history of the 

complementary work for the simply supported beam. From the 

figure, it can be verified that the values are converged stably.

The optimized designs of the discrete LSM[25], the ABCA 

for topology optimization[23] and the ABCA for topological 

shape optimization are shown in Table 3. These results show 

that optimal designs based on the discrete LSM, the ABCA 

for topology optimization and the ABCA for topological 

shape optimization are almost equal, and the convergence rate 

of the ABCA for topological shape optimization is the fastest 

among the methods.

4.2 Clamped Beam

A clamped beam measuring 1.6 m × 0.2 m × 0.01 m and 

subjected to 30 N at the center of the bottom surface is shown 

in Fig. 5. The design domain is divided into 240 × 30 by 

rectangular finite elements. The material properties are 

assumed to have Young's modulus of 30 MPa, Poisson's ratio 

of 0.3 and yield strength of 0.06 MPa. The materially 

nonlinear model is assumed to be a power-law material model 

having a work-hardening exponent of 0.5. That is, the 

stress-strain relationship after yielding is σ = 1.34ε0.5. The 

limit value is set to 5, the δ is set to 0.8, and the rmin is set 

to between 1.5 and 3.0. The objective of this problem is to 

determine the topological shape design having minimum 

value of complementary work while satisfying a volume 

constraint of 20%. Fig. 6 shows the iteration history of the 

complementary work for the clamped beam. From the figure, 

it can be verified that the values are converged stably.

4.3 Discussions

The BEI is first employed for the topological shape 

optimization of linear and nonlinear problems, but it can be 

found that the BEI is not sufficient to properly solve the 

solution of nonlinear problems. This is because the defined 

boundary elements using the BEI are too narrow. In order to 

address this problem, the IBEI is suggested. Although the BEI 

defines the solid and void elements, which are on each layer 

at the both sides of the boundary line as the boundary 

elements, the IBEI defines the elements which are on double 

layers as the boundary elements. Therefore, the defined 

boundary elements can be expanded considerably, and nonlinear 

problems can also be solved appropriately based on the IBEI.

In view of the accuracy of convergence, the discrete LSM 

and the ABCA for topological shape optimization yield a 

better solution than the ABCA for topology optimization. The 

reason is that the discrete LSM and the ABCA for topological 

shape optimization have the effect of shape optimization. 

Table 3 Comparison of optimized designs using the discrete 

LSM and the ABCAs for the clamped beam

Linear

/ Nonlinear

case

Discrete 

LSM[25]

ABCA for

topology 

optimization[23]

ABCA for 

topological 

shape 

optimization

Linear Iter.: 170

Obj.: 0.2449 J

Iter.: 53

Obj.: 0.2506 J

Stdev.: 0.0113

Iter.: 41

Obj.: 0.2481 J

Stdev.: 0.0097

Geometrically

nonlinear
Iter.: 166

Obj.: 0.2341 J

Iter.: 53

Obj.: 0.2401 J

Stdev.: 0.0108

Iter.: 52

Obj.: 0.2358 J

Stdev.: 0.0098

Materially

nonlinear
Iter.: 177

Obj.: 0.8499 J

Iter.: 59

Obj.: 0.8770 J

Stdev.: 0.0119

Iter.: 47

Obj.: 0.8561 J

Stdev.: 0.0103

Both

geometrically

and materially

nonlinear

Iter.: 117

Obj.: 0.8113 J

Iter.: 52

Obj.: 0.8300 J

Stdev.: 0.0118

Iter.: 44

Obj.: 0.8241 J

Stdev.: 0.0101

Fig. 5 Problem definition of the clamped beam

Fig. 6 Iteration history of the complementary work for the 

clamped beam
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The effect could be easily confirmed from Table 4. From 

the optimized design by ABCA for topology optimization, it 

can be verified that the method makes the unnecessary small 

sized holes in the structure and solid bumps on the surface. 

However, the suggested ABCA in this paper could create 

optimum number of the holes and alleviate the surface 

roughness as shown because the method searches the solutions 

in only boundary area (shape optimization) based on IBEI 

unlike searching solutions in overall design domain by ABCA 

for topology optimization.

Also, the discrete LSM can find a somewhat better solution 

for topological shape optimization than the ABCA for 

topological shape optimization. Although the ABCA for 

topological shape optimization uses only the shape sensitivity 

information, the discrete LSM uses a normal vector of 

structural boundary as well as shape sensitivity information. 

It can thus be found that the normal vector of the structural 

boundary provides information about better solutions. 

However, the differences between objective functions using 

the discrete LSM and the ABCA for topological shape 

optimization are insignificant.

It can be verified that the convergence rate of the ABCA 

for topological shape optimization is faster than the discrete 

LSM and the ABCA for topology optimization (except in the 

geometrically nonlinear case). This is because the searching 

domain of the suggested ABCA is defined continuously, so 

the searching domain is much narrower than that of the 

ABCA for topology optimization. Also, since the discrete 

LSM performs the optimization based on the Hamilton-Jacobi 

equation, which can evolve the geometry only from the 

existing boundary based on the shape and topological 

sensitivities, the convergence rate of the suggested ABCA that 

searches the solutions based on continuously updated 

boundary elements (region) is faster than the discrete LSM.

In the geometrically nonlinear case, the convergence rate 

of the ABCA for topological shape optimization is not 

significantly improved compared with that of the ABCA for 

topology optimization. From this, it follows that the searching 

domain of the suggested ABCA is still narrow, although the 

searching domain is expanded by the IBEI. Despite of the lack 

in improvement of the convergence rate of the geometrically 

nonlinear case, it can be verified that the shape optimization 

is well carried out by the ABCA for topological shape 

optimization from the improved objective function compared 

with that of the ABCA for topology optimization. Even 

though it is possible that it might be slow to find an optimal 

topology for a relatively complicated structure such as the 

optimized solution for the geometrically nonlinear case, the 

suggested ABCA reflects the substantial effect of shape 

optimization.

The discrete LSM requires initial holes or weighting factors 

for topological sensitivity[3,6,25] in order to create new holes 

in the structures. However, the number of initial holes or the 

value of the weighting factor significantly affects the optimized 

solutions. Therefore, the number of initial holes or the value 

of the weighting factor is appropriately predetermined for the 

discrete LSM. On the other hand, the suggested ABCA can 

create holes naturally without any initial holes or topological 

sensitivity because the solid elements are distributed to 

efficient regions in the overall design domain, although only 

the boundary elements are optimized. Therefore, the suggested 

method is more efficient than the discrete LSM.

5. Conclusions

In this study, a method for topological shape optimization 

for nonlinear structures based on the ABCA is suggested. 

From the results of the numerical examples, the following 

conclusions are made:

(1) To perform the topological shape optimization for linear 

and nonlinear structures, a variable called the “Improved 

Boundary Element Indicator (IBEI)” is employed.

(2) The suggested method can naturally create holes in the 

structure without any initial holes or topological sensitivity, 

although only the boundary elements are optimized.

(3) The objective function of the suggested ABCA is better 

Table 4 Comparison of optimized simply supported beams in 

the materially nonlinear case

Method Optimized design

Discrete LSM[25]

ABCA for

topology 

optimization[23]

ABCA for 

topological shape 

optimization
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than that of the ABCA for topology optimization, and similar 

to that of the discrete LSM.

(4) It can be found that the convergence rate of the 

suggested ABCA is improved up to more than 60% of the 

discrete LSM and 5% of the ABCA for topology optimization 

(except for the geometrically nonlinear case).
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