
391

Journal of the Korean Society of Manufacturing Technology Engineers 27:5 (2018) 391~400

https://doi.org/10.7735/ksmte.2018.27.5.391 J. Korean Soc. Manuf. Technol. Eng.
ISSN 2508-5107(Online) / ISSN 2508-5093(Print)

Best Paper of This Month

  
Topological Shape Optimization Based on Harmony Search Method

Seung-Min Leea, Seog-Young Hana*
a School of Mechanical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea

ARTICLE INFO ABSTRACT
Article history: A new topological shape optimization scheme based on the harmony search (HS) 

method is proposed, which provides an optimized structural shape for topology 
and shape optimization simultaneously via shape optimization only. The 
parameters of the HS method such as harmony memory considering rate, pitch 
adjusting rate, and band width for topological shape optimization are suggested. 
Additionally, new schemes such as boundary element index and pitch control 
number for more stable and robust optimized shape are implemented, and the 
results of the proposed algorithm are compared with those of the discrete level set 
method (LSM) for some numerical examples to verify the effectiveness and 
applicability. From these results, it is shown that objective values and optimized 
topological shape of the proposed algorithm are similar and convergence rate is 
improved at least 42% compared to those of the discrete LSM.

Received 3 April 2018
Revised 1 June 2018
Accepted 3 August 2018

Keywords:
Harmony search
Shape optimization
Topological shape optimization
Boundary element index
Boundary elements

* Corresponding author. Tel.: +82-2-2220-0456
Fax: +82-2-2220-2299

E-mail address: syhan@hanyang.ac.kr (Seog-Young Han).

1. Introduction

To date, various shape optimization methods have been 
developed to provide low costs and high efficiency in 
optimum structural design. Most optimization methods 
gradually and iteratively modify the present design and 
produce a new shape based on the previous shape[1]. Such 
methods require an effective computation time to perform the 
iterative structural optimization. 

 Boundary variation methods for shape optimization were 
actively studied in the 1980’s. Pironneau[2] suggested mesh 
moving algorithms, where the design variables are used as 
coordinates for the nodal points in a finite element model. 
Kikuchi et al.[3] verified the significance of regularity in the 
finite element model in producing a physically optimized 
shape. Botkin and Bennett[4] and Braibant and Fleury[5] 
proposed a boundary variation method, using a set of 

segments such as straight lines, circular and elliptic arcs, and 
spline curves. Also, although mathematical fundamentals of 
boundary variation methods have been sufficiently examined 
for shape optimization and sensitivity analysis, they can be 
applied to shape optimization when the initial topology is 
fixed during the iterative optimization. As a result, it is 
impossible to simultaneously obtain the optimal topology and 
shape of a structure[1]. 

Therefore, shape optimization problems have to be trans- 
formed to material distribution problems. Homogenization[6] 
and a solid microstructure with a penalization method 
(SIMP)[7] were developed in the 1980’s, and these techniques 
represent a remarkable evolution in structural shape opti- 
mization. In addition, evolutionary structural optimization 
(ESO)[8,9] and additive ESO[10] have been developed. These 
approaches perform optimization by removing and adding 
elements based on sensitivity numbers. In addition, these 
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methods were expanded to a bi-directional ESO (BESO)[11], 
which carries out optimization by simultaneously adding and 
removing elements in each iteration. 

Topological shape optimization is an effective optimization 
that simultaneously performs topology and shape optimiza- 
tion. There are two methods, namely the phase field method 
(PFM) and the level set theory (LSM). The PFM suggested 
by Bourdin and Chambolle[12] established that the boundary 
where two phases coexist was not divided by a line via 
mathematical expression, but instead by the regions. Since the 
LSM for topology optimization was suggested by Sethian and 
Wiegmann[13], Wang et al.[14] proposed a topological shape 
optimization method based on the LSM. Sethian and Osher[15] 
evaluated the sensitivities for the shape and topology based 
on the Hamilton-Jacobi equation.

However, even though the LSM is a very effective 
topological shape optimization method, its results are 
considerably dependent on the initial holes[16] and weight 
factor of the topological sensitivity[17]. It requires a proper 
number of initial holes and a weight factor to obtain an 
optimized shape through numerical experiments. In addition, 
since it is based on mathematical gradient methods, the shape 
can be changed only on the previous boundaries[18]. Therefore, 
it is necessary to develop a better and simpler topological 
shape optimization technique than the LSM.

It has been proved that the HS algorithm[19] as a 
probabilistic search algorithm among non-gradient-based 
methods has a distinguished optimization capability for 
various engineering problems[20-23]. However, the algorithm 
has been applied only to functional optimization or size 
optimization for truss dome structures. Even though the HS 
has been applied to static, dynamic stiffness topology[24,25] and 
shape[26] optimization problems, it has not been applied to 
topological shape optimization.

In this study, the HS method was applied to shape and 
topological shape optimization to overcome the weaknesses of 
gradient-based methods. The proposed topological shape 
optimization algorithm is suggested to provide topology 
optimization characteristics by performing only shape 
optimization via searching for the boundary elements of a 
temporarily optimized structure at each sub-iteration. The 
proper parameters of the HS method, such as the HMCR, 
PAR, and BW for topological shape optimization, were 
investigated in this parametric study. In addition, new 

schemes for a more stable and robust optimized shape were 
implemented, and the results of the proposed topological 
shape optimization of numerical examples were compared 
with those of the discrete LSM[27] to verify its effectiveness 
and applicability.

2. Formulation of Topological Shape Optimization

2.1 Formulation
The objective of this study was to obtain an optimized 

structure having the largest static stiffness satisfying the 
volume constraint through topological shape optimization. 
The total strain energy was employed as the objective 
function. Therefore, the static stiffness optimization for 
topological shape optimization can be formulated as follows: 
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where U is the total strain energy, f is the load vector, u is 
the displacement vector, the superscript T represents the 
transpose of a matrix, K is the global stiffness matrix, Vj is 
the volume of each element, V* is the target volume of the 
optimized topology, xj is the density of each element, and the 
subscript j represents the element number.

2.2 Material interpolation
In order to obtain the solid-void design of an optimized 

topological shape structure, the following material inter-  
polation method[11] was applied.

1( ) p
j jE x E x= (2)

Here, E1 is the elastic modulus of the solid material and p 
is the penalty exponent factor.

The global stiffness matrix K can be expressed by the 
following equation:

n
p
j j

j

K x K=å (3)

where Kj is the elemental stiffness matrix of the jth solid 
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Fig. 1 Definition of the boundary elements

element and n is the number of the total elements.

2.3 Sensitivity number
In this study, the sensitivity number of each element for 

searching effective elements was calculated by differentiating 
the total strain energy with respect to the density of each 
element[11]. However, since it was verified that the sensitivity 
number obtained above does not provide a robust topological 
shape, the harmony rate (HR) update rule was implemented. 
This rule is similar to the pheromone update rule in ACO[28] 
and the waggle index update rule[29] in ABCA. The HR update 
rule is a rule that updates the tune information in the present 
iteration using the amount of the tune information Hj shared 
on each element in the previous iteration and the present note 
information, tj. The HR update rule was defined using the HR 
update coefficient δ as follows:

( ) ( 1) ( )(1 )k k k
j j jH H td d-= ´ + - ´ (4)

where k is the number for the present iteration, H is the matrix 
of the HR, tj is each note in the HM, and δ is the HR update 
coefficient. The HR update rule creates a better harmony note 
from each note in the previous iteration. The improved 
sensitivity number is defined using the HR update rule as 
follows:
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3. Definition of the Boundary Elements

The principal aim of this study was to develop a topological 
shape optimization scheme that simultaneously provides an 
optimized structural shape through topology optimization as 
well as shape optimization by performing shape optimization 
only. Therefore, the boundary elements of a structure for 
shape optimization should be defined in the first step. These 
boundary elements correspond to the searching domain 
associated with the change of the structural shape during 
shape optimization. The bold black line in Fig. 1 indicates the 
surface boundary of the structure at the present iteration. The 
boundary elements are defined by the elements located on 
each of the upper and lower layers adjacent to the surface 
elements of the structure, as shown in Fig. 1. The solid and 

void elements are dark grey and white in Fig. 1, respectively, 
where the boundary elements are bright grey.

The boundary elements can be defined using the boundary 
element indicator (BEI) described by Eq. (6).

1 if it is a boundary element
1 if it is not a boundary elementjBEI
+ì

= í-î
(6)

Here, BEIj is the boundary element indicator of the jth 
element.

In addition, estimation of each element is needed to select 
more efficient or significantly contributed elements for shape 
optimization. The estimation of each element was evaluated 
by its fitness using Eq. (7), which was calculated by the 
temporary fitness based on the sensitivity number of Eq. (5) 
multiplied by BEIj.

j j jfitness BEI temporary fitness= ´ (7)

From the above equation, the boundary elements can be 
distinguished based on the sign of the fitnessj value. That is, 
the jth element becomes the boundary element if the sign of 
fitnessj is positive. Likewise, shape optimization can be 
carried out by redefining BEIj for the newly searched 
boundary elements at each iteration. However, this method 
cannot naturally produce holes inside the structure. The reason 
for this is that this method refines BEIj only once at each 
iteration, based on the fitness of entire boundary elements at 
each iteration. Therefore, the boundary shape of the structure 
can be changed, but holes inside the structure cannot be 
naturally produced.

Since topology optimization is the best way to reduce 
structural weight, topology optimization is generally performed 
first and then, shape optimization follows for the structural 
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Harmony search Topological shape optimization
Search range Boundary elements domain

Harmony memory (HM) All elements discretized in full design domain
Quality of each feasible solution Fitness

Better harmony memory vectors than the worst vector The number of solid elements corresponding to target volume
The worst vector in HM Void elements

(rand ≤ HMCR)
The probability of choosing one value from 

the historic values stored in the HM
The probability of choosing one value in the HM

(rand ≤ PAR)
The rate of adjustment for the pitch chosen from the HM The rate of adjustment for the element position chosen from the HM

(rand ≤ HMCR)
The probability of randomly choosing one feasible 

value not limited to those stored in the HM
The probability of choosing one value in the HM

(rand ≤ PAR)
The rate of doing nothing The rate of doing nothing

Table 1 Correspondences of the variables in the HS method to those in topological shape optimization using the HS

design. In this study, we suggest a shape optimization scheme 
that simultaneously performs topology and shape optimization 
only during the shape optimization process. In other words, 
the proposed algorithm possesses a topology optimization 
characteristic by continuously reestablishing the BEI for all of 
the boundary elements whenever an element among them is 
searched. In this manner, holes inside the structure may be 
naturally generated.

4. Topological Shape Optimization Using the 
Harmony Search

4.1 Harmony search 
Harmony search (HS) is a search algorithm inspired by the 

way an orchestra performs as a metaheuristic method. 
Different from gradient-based methods, it does not require 
gradient information since it uses only a random and 
probabilistic search and has a high search capability for a 
global solution. The optimization process is carried out by 
estimating and updating each note harmoniously obtained by 
probabilistically tuning each randomly generated note. Thus, 
the way an orchestra performs is a search method and each 
note plays a role as a design variable in the HS algorithm. 
The number of randomly generated notes in harmony memory 
(HM) is called the harmony memory size (HMS). A local 
solution can be avoided by tuning the notes through a 
probabilistic search using the principal parameters, including 
the harmony memory considering rate (HMCR) and pitch 

adjusting rate (PAR)[19].
In order to apply the HS method to topological shape 

optimization, the variables of the method should be properly 
transformed. The entire search domain corresponds to the 
boundary elements in topological shape optimization. Each 
note corresponds to each discretized element in the total 
design domain. HM is a set of temporary candidate solutions 
and is composed of solid-void elements. The HMS is set to 
1, considering that the finite element analysis has to be carried 
out as many times as the value of the HMS. Harmonious notes 
in topological shape optimization correspond to solid 
elements, such that a set of these indicates a temporary 
candidate solution. Meanwhile, unharmonious notes correspond 
to the void elements, such that a set of these indicates a void 
region in an optimized structure. The correspondences of the 
variables in the HS method to those in the suggested 
topological shape optimization based on the proposed method 
are shown in Table 1.

4.2 Methods for topological shape optimization
A topological shape optimization algorithm using the HS 

algorithm was developed after verifying that the shape 
optimization method based on the HS was successfully 
performed. Since the BEIi is updated once at each iteration 
in the shape optimization above, this method can only search 
the solutions in the boundary elements of the structure; 
therefore, holes in the structure cannot be created.

In order to create holes naturally and to optimize the 
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boundary elements simultaneously in topological shape opti-  
mization, the BEIi should be updated continuously whenever 
a temporary candidate solution in each iteration is found 
(further explained in Section 4.4). Through the aforementioned 
process, the solid elements are distributed to efficient regions 
in the overall design domain, based on fitness values, although 
only the boundary elements are optimized. When the BEIi 
is updated continuously, whenever a temporary candidate 
solution is found, the locations of the defined boundary 
elements can be moved sequentially, from the locations of the 
boundary elements in the initial topology to the locations of 
the efficient elements in the overall design domain, in each 
sub-iteration. This results in a continual process of topology 
optimization, although only a shape optimization based on the 
HS is performed.

After an approximate structure is created, the locations of 
the defined boundary elements are almost fixed in each 
iteration, because it is impossible to create any subsequent 
new holes in the structure. Hence, shape optimization 
proceeds after the convergence of an approximate topology of 
the structure.

In order to secure robustness and fast convergence of the 
proposed topological shape optimization algorithm, various 
methods have been applied. A filtering scheme was employed 
to prevent a checkerboard pattern and a simple average 
scheme was implemented for stability of the optimization 
process[11], as with the shape optimization algorithm. It was 
found that these two schemes may not successfully provide 
a satisfactory convergence rate and topological shape.

Thus, newly supplementary methods were employed in the 
proposed topological shape optimization algorithm. In terms 
of the number of layers searching for boundary elements, the 
case with two layers from the boundary of the structure 
showed a faster convergence rate as well as robust topological 
shape than that with one layer. In order to avoid a local 
solution, the pitch control number was applied, which is 
similar to the limit value suggested by Park and Han[29]. The 
pitch control value was in the range of 5-10 and a simple 
average scheme was not used at every specific iteration 
number. In cases where the sensitive numbers are very small, 
an effective search may not be possible. As a result, the 
sensitive numbers are normalized and then, the fitness for 
each element is calculated. Also, the proper ranges of the 
parameters in topological shape optimization were determined 

through a parametric study with HMCR, PAR, and BW values 
of 0.7-0.85, 0.65-0.7, and 30-40, respectively. The HR update 
coefficient is in the range of 0.7-0.8.

4.3 Topological shape optimization procedure based on 
HS

Step 1. Initialization
The design domain for topological shape optimization was 

discretized by a 4-node rectangular finite element. Arbitrary 
values of the HMCR, PAR, BW, HR update coefficient, pitch 
control value, and filtering radius were chosen within proper 
ranges determined by the parametric study.

Step 2. Calculation of fitness
The fitness for each element was calculated based on the 

sensitivity numbers determined by the temporary fitness from 
Eq. (5) and the BEI from Eq. (7). In this step, the simple 
average scheme[11] and pitch control value are used. The 
simple average scheme is as follows:

( 1) ( )
( )

2

k k
j jk

j
a a

a
- +

= (8)

Step 3. Generation of a new HM
Temporary candidate solutions, x'm and h'm, are randomly 

selected in the boundary elements. The subscript m indicates 
the elemental number. The movement of h'm is dependent on 
the HMCR in Eq. (9). When rand is smaller than or equal to 
HMCR, h'm moves to the PAR procedure. Otherwise, h'm is 
randomly reselected in the boundary elements.
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The h'm value moved in the PAR procedure is rearranged 
due to the PAR in Eq. (10). If rand is smaller than or equal 
to PAR, h'm is moved to the adjacent element in the BW 
range.
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Here, BW indicates the arbitrary width with which the 



Seung-Min Lee, Seog-Young Han

396

Fig. 2 Flowchart of topological shape optimization using the HS

selected element h'm can be moved, and u(-1, 1) is a random 
number with a value between -1 and 1.

Step 4. Updating the HM
In this step, whenever the mth temporary candidate 

solutions, x'm and h'm, are being searched, the BEI for the 
boundary elements defined by Eq. (6) should be continuously 
redefined. Thus, the element with a better fitness value for the 
two candidate solutions, x'm and h'm, is stored as a solid 
element and the other is stored as a void element. This 
procedure is iterated by the number of the total boundary 
elements and naturally produces holes inside the optimized 
structure. 

Step 5. Control for the target volume 
Since the number of the stored solid boundary elements in 

HM may not satisfy the target volume, the target volume 
should be satisfied by controlling the number of boundary 
elements, based on the fitness values.

Step 6. Calculate the objective function value for the 
updated optimal solution using a four-node rectangular finite 
element

The objective function value was calculated by using a 
filtering scheme[11].

Step 7. Checking convergence
The following convergence criterion of Eq. (11) was applied 

to terminate the optimization process.
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Here, τ is the allowable convergence tolerance (0.001), U 
is the total strain energy, k is the number of the present 
iteration, and s is the integer number resulting in a converged 
objective function. In this study, s was selected as 5 to ensure 
the change of the objective function was sufficiently small 
over the last 10 iterations. If the convergence criterion is not 
satisfied, proceed to Step 2 and the above procedure is 
repeated until the convergence criterion is satisfied.

The flowchart of topological shape optimization based on 
the HS is shown in Fig. 2.

5. Application Examples

In order to verify the effectiveness of the suggested 

topological shape optimization scheme based on the HS, three 
typical examples were investigated. Since the optimization 
scheme was performed using a four-node rectangular finite 
element, the optimized shapes were compared with those of 
the discrete LSM[27]. The objective of the examples was to 
obtain an optimized topological shape having the smallest 
strain energy (the largest static stiffness) under the prescribed 
volume constraint. The methods and proper parameters of the 
HS previously mentioned in Section 4.2 were used for the 
topological shape optimization. The values of HMCR, PAR, 
and BW were selected to be 0.85, 0.65, and 40, respectively. 
The penalty exponent factor p was chosen as 3. The number 
of search boundary lines was two and the HR update 
coefficient was 0.8. The filtering radius rmin and the pitch 
control were selected as 2.5-4 and 5-10, respectively. The 
error limit of the convergence criterion was 0.1%. The 
topological shape optimization based on the HS method was 
performed 10 times for the three typical examples since the 
HS is a metaheuristic algorithm. 
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Fig. 3 Problem definition of a short cantilever beam

Table 2 Comparison of optimized topological shapes for the 
short cantilever beam

Method Harmony Search Discrete LSM

Optimized Design
(Iteration number)

(27.6) (48)

Fig. 4 Iteration history for the objective function value of the 
short cantilever beam

Fig. 5 Problem definition of the simply supported MBB beam

5.1 A short cantilever beam
The suggested algorithm was applied to topological shape 

optimization for a short cantilevered beam subjected to a 
vertical load at the center of the free end, as shown in Fig. 
3. The dimensions of the beam are as follows: a length of 0.8 
m, a height of 0.6 m, and a thickness of 0.001 m. The vertical 
load (P) is 100 kN, the Young’s modulus is 100 GPa, and 
the Poisson’s ratio is 0.3. The volume constraint is 40% of 
the initial volume. The design domain was divided into 80×60 
four-node rectangular finite elements. The filtering radius 
rmin and the pitch control were selected as 3 and 5, 
respectively. The linear weight factor in the discrete LSM was 
4.

The optimized topological shape and iteration number 
according to the HS and discrete LSM are shown in Table 
2. The methods produce almost the same shapes, but the 
iteration number of the HS is much smaller than that of the 
discrete LSM. The iteration histories obtained from the HS 
and discrete LSM method are shown in Fig. 4. It was verified 
that the HS method shows fast and stable convergence. The 
beginning part of optimization in the HS produced very large 
objective function values. The reason is that the topological 
shape optimization is performed in a constant volume 
throughout the optimization process.

The average objective function value and convergence 
iteration number are 3.102 J and 27.6 for the suggested 

method and 3.0874 J and 48 for the discrete LSM, 
respectively. It is known that the convergence rate of the 
suggested method improved by up to 42% compared to that 
of the discrete LSM. The standard deviation for the suggested 
scheme was 0.0079 J, and the robust topologies were obtained 
for 10 trials.

5.2 A simply supported MBB beam
The suggested algorithm was applied to topological shape 

optimization for a simply supported MBB beam subjected to 
a vertical load at the center of the bottom side, as shown in 
Fig. 5. The dimensions of the beam are as follows: a length 
of 0.8 m, a height of 0.4 m, and a thickness of 0.001 m. The 
vertical load (P) is 100 kN, the Young’s modulus is 100 GPa, 
and the Poisson’s 100 kN, the Young’s modulus is 100 GPa, 
and the Poisson’s ratio is 0.3. The volume constraint is 40% 
of the initial volume. The design domain was divided into 
80×40 four-node rectangular finite elements. The radius of the 
filter scheme rmin and the pitch control were chosen as 3 and 
10, respectively. The linear weight factor w in the discrete 
LSM was 4. The optimized shapes from each method are 
detailed in Table 3.
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Fig. 7 Problem definition of the knee structure

Table 4 Comparison of optimized topological shapes for the knee 
structure

Method Harmony Search Discrete LSM

Optimized Design
(Iteration number)

(31.8) (83)

Fig. 8 Iteration history for the objective function value of the 
knee structure

Table 3 Comparison of optimized topological shapes for the 
simply supported MBB beam

Method Harmony Search Discrete LSM

Optimized Design
(Iteration number)

(27.9) (63)

Fig. 6 Iteration history for the objective function value of the 
simply supported MBB beam

The optimized shape from the suggested topological shape 
optimization based on the harmony search shows a very 
similar shape to the shape obtained from the discrete LSM. 
The average objective function value and convergence 
iteration number of each method are 1.1172 J and 27.9 for 
the suggested method and 1.224 J and 63 for the discrete 
LSM, respectively. Also, it was demonstrated that the 
convergence rate of the proposed method is much faster than 
that of the discrete LSM and the iteration history of the 
suggested scheme is very stable, as shown in Fig. 6. The 
standard deviation for the suggested scheme was 0.0023 J, and 
the robust topologies were obtained for 10 trials.

5.3 Knee structure
The suggested algorithm was applied to topological shape 

optimization for a knee structure subjected to a vertical load 
at the center of the bottom side, as shown in Fig. 7. The 
dimensions of the beam are as follows: a length of 0.6 m, a 
height of 0.6 m, and a thickness of 0.001 m. The vertical load 
(P) is 100 kN, the Young’s modulus is 100 GPa, and the 
Poisson’s ratio is 0.3. The volume constraint is 40% of the 
initial volume. The design domain was divided into 60×60 
four-node rectangular finite elements. The radius of the filter 
scheme rmin and pitch control were selected as 3 and 5, 

respectively. The linear weight factor in the discrete LSM was 
7. The optimized shape for each method is listed in Table 4.

The optimized shape from the suggested topological shape 
optimization based on the harmony search for this example 
also shows a very similar shape as the shape obtained from 
the discrete LSM. The average objective function value and 
convergence iteration number due to each method are 6.9795 
J and 31.8 for the suggested method and 6.8820 J and 83 for 
the discrete LSM, respectively. Also, it was demonstrated that 
the convergence rate of the proposed method is much faster 
than that of the discrete LSM and the iteration history of the 
suggested scheme is very stable, as shown in Fig. 8. The 
standard deviation for the suggested scheme was 0.039 J, and 



Journal of the Korean Society of Manufacturing Technology Engineers 27:5 (2018) 391~400

399

the robust topologies were obtained for 10 trials.

6. Conclusions

A new topological shape optimization scheme based on the 
harmony search method is proposed in this paper. The 
suggested scheme simultaneously performs topology and 
shape optimization employing only a shape optimization 
process. In other words, the proposed algorithm has a 
characteristic of topology optimization in that it continuously 
reestablishes BEI for all of the boundary elements whenever 
an element among them is searched. In this manner, holes may 
be naturally generated inside the structure. 

Also, proper ranges of the parameters in the topological 
shape optimization were determined through a parametric 
study to produce a proper optimized shape. Various schemes 
were employed for stability, robustness, and a fast convergence 
rate. From the above results, the following conclusions can be 
made.

(1) The harmony search method was properly implemented 
for the suggested topological shape optimization algorithm. 
In addition, the various applied schemes provide stability, 
robustness, and a fast convergence rate. 

(2) It was demonstrated that the objective values and 
optimized topological shape of the proposed algorithm are 
very similar and the convergence rate was improved by at 
least 42% compared to those of the discrete level set method.

(3) The effect of topology optimization was realized 
through the proposed boundary element index (BEI) during 
only a shape optimization process.
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