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1. Introduction
Welding is a crucial process that determines the final 

products and productivity in shipbuilding, automobiles, and 
machinery. In various welding processes, arc welding is a 
process that generates an arc using high-energy sources such 
as electricity to melt the materials to integrate parts. The 
process monitoring of arc welding employs multiple types of 
sensors, collects real-time data, and analyzes it systematically. 
Generally, current and voltage sensors are used to measure the 
significant effect of arc stability and metal transfer on welding 
quality, after which the collected data are synchronized for 
analysis[1-2]. Studies have been conducted to evaluate and 
ensure the quality of joint using real-time welding process 
monitoring. These studies used collected data, the mean and 

standard deviation of welding process variables, and short 
circuit frequencies. Adolfsson et al.[3]; analyzed the averages, 
standard deviations, and variances of welding current, arc 
voltage signal, frequency, and duration of short circuits to 
evaluate welding quality. In an effort to estimate the amount 
of spatter in the short circuit transfer mode of GMA welding, 
Kang et al.[4] attempted to develop statistical models. The bead 
geometry is a representation that can be used to assess the 
quality of the joint. Therefore, it is crucial to ensure an 
appropriate bead geometry However, obtaining high-quality 
bead geometry through experiments is time-consuming and 
costly because the welding process is complex, with multiple 
inputs and outputs, and interrelated process variables that 
affect bead geometry. Therefore, studies have been conducted 
to develop a prediction model that uses the relationship 
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between current and voltage as input variables and bead 
geometry as the output variable. Numerical analysis is 
effective method to predict the bead geometry using process 
variables[5-7]. However, because of the nonlinear process, the 
accuracy of a simplified numerical model for predicting bead 
geometry is not accuracy. The accuracy of regression 
analysis-based predictive models is typically high within an 
experiment. Kim et al.[8] used regression analysis to determine 
the relationship between process variables and bead geometry 
in GMA welding. Recently, deep learning has been used to 
develop a predictive model for bead geometry. Jin et al. [9] 
studied the prediction of back bead in GMAW using deep 
learning. Di et al.[10]; proposed neural-network-based self- 
organized fuzzy logic control for arc welding. Kim et al.[11]; 
chose a backpropagation(BP) neural network to predict a bead 
geometry for the GMA welding. Ge et al.[12] collected data 
on welding defects, used an auto-regressive(AR) model to 
analyze errors, and applied the hidden Markov model 
algorithm for real-time identification and prediction of 
defects. Recently, studies have been conducted on improving 
welding productivity. The simplest way to enhance welding 
productivity is by increasing welding speed or modifying 
welding methods. With this reason, the tandem GMA, a 
multi-electrode welding process, has recently been 
examined[13-15].

Although the tandem GMA process has high productivity 
because it leads to a single weld pool using two or more 
welding torches and wire, there are challenges in ensuring 
joint quality because defects can occur due to the proximity 
of two or more welding arcs[16-17]. Recently, various analytical 
and experimental tests have been conducted on the tandem 
welding process. However, there is a scarcity of studies that 
accurately predict bead geometry for tandem GMA. 
Particularly, the development of a prediction algorithm for 
bead geometry using real-time welding data has not yet been 
performed. Therefore, the tandem GMA welding of SM490 
steel was conducted, whereby the welding current and voltage 
were monitored and collected in real-time in this study. The 
width and height of the beads were measured accurately using 
a 3D scanner. A prediction model based on neural networks 
was developed using the data obtained from real-time tandem 
GMA welding. The real-time data was used to train the DNN 
algorithm that predicts bead geometry using the BP learning 
technique. In addition, the accuracy of the developed bead 
geometry prediction algorithm was validated using Predictive 

Ability of Model(PAM).

2. Experimental work
2.1 Material and apparatus

Table 1 shows the chemical properties of the base material 
utilized in this experiment, specifically SM490, which had a 
thickness of 9 mm.

Tandem welding is a welding process that uses two or more 
independent power sources and torches. It is classified into 
leading and trailing welding. The tandem GMA welding 
apparatus for this study consists of a welding robot, two 
welding power sources, and a monitoring system, as shown 
in Fig. 1. The OTC Welbee P500L, a DC pulse welding 
power source, was used in constant voltage mode as the 
primary power source, whereas the OTC DW300 was used 
in AC pulse mode as the secondary power source. A 
Yaskawa AR700 welding robot was used for GMA welding. 
A 1.2-mm-diameter solid wire(AWS: A5.18 ER70S-6) and a 
1.2-mm-diameter flux-cored wire(AWS: A5.20: E71T-1C) 
were used for leading and trailing welding, respectively. An 
Ar 80% + CO2 20% and Ar 90% + CO2 10% mixed gas 
was supplied at 18 L/min and 21 L/min for the lead and 
trailing welding, respectively. The welding was performed 
with bead-on-plate. The welding monitoring system 
(WET-300A) from Monitek was used to monitor the 
real-time process data. To achieve this, a hall sensor-type 
welding current and voltage sensor was installed. Measured 
data was recorded at a rate of 2.5 kHz/s and stored on a 
personal computer.

Table 1 Chemical composition of SM490 (mass%)
C Si Mn P S

0.15 0.20 0.84 0.02 0.05

Fig. 1 Experimental setup for tandem GMA welding
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2.2 Experimental design
As shown in Fig. 2, the input variables were welding current 

and voltage, while the output variables were bead width and 
height. The full factorial design was used as the experimental 
design. In the full factorial design, each input variable is 
arranged at regular intervals, and experiments are conducted 
for all combinations of all levels. The input variables and their 
levels are listed in Table 2. The welding current and welding 
voltage were adjusted from 230 A and 15 V to 270 A and 
35 V, respectively. Other variables, such as the torch angle 
(90o), welding speed of 1.6 m/min, contact tip to work 
distance of 18 mm, and shielding gas flow rate, were kept 
constant. 

Table 3 shows the results from the experiments based on 
different welding conditions, including the welding current 
and voltage, which were collected in real time.

2.3 Measurement of bead width and length 
In the past, the geometry of beads was measured manually 

using tools like calipers. However, these methods were time- 
consuming and lacked accuracy. Therefore, a high- 
resolution non-contact 3D scanner, the Creaform Handyscan 
700, was used to accurately measure the width and length 
of the beads. The measurement values were obtained as 3D 
mesh data, allowing for modeling of the bead geometry, as 
shown in Fig. 3.

3. Results and discussion
3.1 Development of BP-based DNN algorithm 

An artificial neural network(ANN) is constructed based on 
the human nervous system. The ANN is composed of an 
input layer, a hidden layer, and an output layer, with each 
layer comprising multiple nodes. Training data(features) 
entered into each node in layers are multiplied by weights 
randomly set between nodes in an input and output layer. 
After bias is added, training data enters each node in a hidden 
layer. It then undergoes various activation functions that 
return output values. The output values of each node, 
computed as such, are entered into the next hidden layer and 
undergo the same process. They enter into the last output 
layer, and the provisional output, whose difference with the 
actual value (label) is determined by the loss function, is 
computed. Fundamentally, once the feedforward propagation 
process is completed, backpropagation is performed to reduce 
the error determined by the loss function. Backpropagation 

Fig. 2 Input and output variables of the tandem GMA welding

Table 2 Tandem GMA welding variables and their levels
Parameter -α -1 0 1 α

Welding current (A) 230 240 250 260 270

Welding voltage (V) 15 20 25 30 35

Fixed variable

• Torch angle: 90°
• CTWD : 18 mm
• Welding speed : 1.6 m/min
• Shielding gas rate: Leading 18 ι/min, 

Trailing 21 ι/min

Table 3 Result of experimental works: Bead geometry, welding 
current, and welding voltage

Welding 
condition

Leading torch : Welding current : 250 A, 
Welding voltage : 25 V

Bead geometry

Welding current waveform Welding voltage waveform

Fig. 3 The measured bead geometry using a 3D scanner
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operates in the reverse direction of feedforward propagation, 
with the optimization algorithm sequentially adjusting the 
weights and biases of the nodes using partial derivatives. 
The ANN performs feedforward and backpropagation 
cycles until a set number of iterations or conditions are 
met. ANNs are categorized into single-layer perceptron, 
multi-layer perceptron, and deep neural networks(DNNs) 
with two or more hidden layers, based on their development 
stages. While traditional ANNs can handle simple data such 
as the XOR problem, they cannot overcome the vanishing 
gradient problem or overfitting when the number of hidden 
layers increases[18-19]. DNN is a deep learning model. The 
major difference between general neural networks and DNN 
is the number of hidden layers, and as shown in Fig. 4, there 
are multiple hidden layers between the input and output 
layers. Since DNNs comprise more layers than ANNs, they 
often require more training data to obtain better results than 
ANNs.

The DNN is trained using the backpropagation algorithm, 
and due to the extensive computations, its ability to review 
all datasets when gradient descent is applied is slowed down. 
Therefore, stochastic gradient descent is applied, which 
calculates the gradient using only a subset of the data 
randomly drawn from the full dataset. Weights are adjusted 
based on stochastic gradient descent in Eq. (1).

∆     ∆ 


(1)

Here, η and C represent the learning rate and cost function, 
respectively. The loss function, also known as the cost 
function, quantifies and minimizes the difference between the 
predicted values and the actual data during training. Several 

activation functions, including Sigmoid and Tanh, are 
available when designing a hidden layer. Softmax and 
cross-entropy functions are used as activation and cost 
functions in a multi-class classification task. The softmax 
function is defined by Eq. (2).

 exp

exp  (2)

Here, Pj is class probability, while xj and xk represent the 
total input of each unit j and the total input of unit k, 
respectively. Cross-entropy is defined by Eq. (3).

Loss log  (3)

Here, dj is the target probability for output j and Pj is the 
probability output for j after applying the corresponding 
activation function. The number of neurons in a hidden layer 
of the DNN undergoes a trial-and-error method. To improve 
the overall accuracy of the neural network, the training was 
continued until the target error values were reached, the 
maximum number of epochs were completed, or X reached 
its maximum value[13].

Table 4 shows the testing of three to ten hidden layers to 
determine the optimal number of neurons for training the 
DNN algorithm. Out of 200,000 samples, 199,900 were used 
for training and 100 were used for testing the prediction of 
a bead geometry.

(1) Bead width
Fig. 5 compares actual and predicted values of bead widths 

according to the changes in the number of neurons in a hidden 
layer. When a hidden layer had seven neurons, the correlation 
coefficient R was 0.98911, near 1, which indicates that the 
model accurately predicted bead widths.

As a loss function, the mean squared error(MSE) is the 
average of the squared differences between the actual and 
predicted values for the entire dataset, and MSE is defined as 
in Eq. (4).

Fig. 4 A typical architecture of DNN

Table 4 Setpoint for DNN training
Input variables 2

Output variables 1
Neurons on a hidden layer 3~10

Max. epoch 1,000
Error goal 1e-10
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(a) 3 neurons (b) 4 neurons

(c) 5 neurons (d) 6 neurons

(e) 7 neurons (f) 8 neurons

(g) 9 neurons (h) 10 neurons

Fig. 5 R-value for the DNN configuration between 3 and 10 neurons in the hidden layer on bead width
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MSE 

 ∑  
  

 (4)

Here, Yi is the experimental value,  is the predicted value, 
and n is the number of experiments.

The closer the MSE is to 0, the higher the accuracy of the 
predicted values. Table 5 and Fig. 6 show the MSE error of 
values predicted by the DNN algorithm and training values. 
If there are seven neurons in a hidden layer, the MSEs of the 
test and training data are 0.1153 and 0.1034, respectively, 
indicating that the model accurately predicts bead widths.

(2) Bead height
The algorithm was trained to minimize the error by 

adjusting the number of neurons in the initial hidden layer 
from three to ten in order to develop a bead height prediction 
algorithm. Fig. 7 shows the results comparing the actual and 
predicted values of bead heights according to the number of 
neurons in a hidden layer. The correlation coefficient R was 
closest to 1 at 0.98992; when a hidden layer had eight 
neurons, confirming that it accurately predicted bead heights.

Table 6 and Fig. 8 show the MSE errors of values predicted 
by the DNN algorithm and training data. When there were 

Table 5 MSE values for DNN configuration for bead width with 
hidden layer

Hidden 
layer Epochs Training time 

(sec)
Training error 

(MSE)
Testing error 

(MSE)
3 240 00:00:14 0.2974 0.3825
4 38 00:00:02 0.2722 0.3015
5 1,000 00:01:18 0.1862 0.2354
6 708 00:00:31 0.2458 0.3589
7 1,000 00:01:07 0.1034 0.1153
8 402 00:00:19 0.1737 0.2014
9 595 00:00:28 0.1935 0.2918
10 900 00:00:58 0.1266 0.1359

Fig. 6 MSE values for DNN configuration for bead width

(a) 3 neurons (b) 4 neurons

(c) 5 neurons (d) 6 neurons



Won-bin Oh, Ji-yeon Shim

322

seven neurons in a hidden layer, the MSEs of the test and 
training data were 0.1153 and 0.1034, respectively. The 
minimal error confirmed that the bead widths were accurately 
predicted. Table 6. MSE values for deep neural network 
configuration between 3 and 10 neurons in the hidden layer 
for bead height.

3.2 Evaluation of the BP-based DNN algorithm
The accuracy of the developed BP-based DNN algorithm in 

predicting bead width and height was evaluated using the 
PAM in Eq. (5)[20].

PAM

 (5)

Here, NPAM represents the number of predicted values in the 

range  ≤

 
≤. Ntotal is the total number of 

Fig. 8 MSE values for DNN configuration for bead height

Table 6 MSE values for DNN configuration for bead height 
with hidden layer

Hidden 
layer Epochs Training time 

(sec)
Training error 

(MSE)
Testing error 

(MSE)
3 51 00:00:03 0.3819 0.4067
4 156 00:00:51 0.4423 0.4768
5 554 00:00:38 0.3157 0.3363
6 356 00:00:29 0.1854 0.2387
7 1,000 00:00:81 0.1141 0.1865
8 1,000 00:0075 0.1233 0.1536
9 76 00:00:05 0.3210 0.3454
10 471 00:00:49 0.2219 0.2548

(e) 7 neurons (f) 8 neurons

(g) 9 neuron (h) 10 neurons
Fig. 7 R-value for the deep neural network configuration between 3 and 10 neurons in the hidden layer for bead height
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predicted values, BM is the actual value, and BP is the value 
predicted by the algorithm. The standard deviation describes 
the model distribution and indicates how closely the model 
predicts the measured bead width. whereas PAM accurately 

assesses predictions within an error range of 10% and 
measures the accuracy of the model. The prediction accuracy 
was performed by comparing the measured and predicted 
bead, as shown in Fig. 9 and 10. Fig. 11 and 12 show the 
number of errors, and the prediction accuracy of the 
developed algorithm was computed at 96% for both bead 
widths and heights, as shown in Table 7. The error range 
within 10% confirmed that the developed algorithm predicts 
bead geometry accurately.

4. Conclusion
In this study, tandem GMA welding was performed on a 

bead-on-plate using SM490 to develop a bead geometry 
prediction algorithm. The bead geometry prediction algorithm 
was developed using real-time data, leading to the following 
conclusions:

(1) The Tandem GMA welding experiment was performed 
25 times for each welding condition, following the full 
factorial experimental method. Real-time data on welding 
current and voltage waveforms were collected during the 
welding process. Furthermore, an accurate measurement of the 
bead width and height was obtained using a 3D scanner as 
the output variables. The bead geometry prediction algorithm 
was developed using real-time data and measured data from 
3D modeling.

(2) The number of hidden layer neurons was determined by 

Fig. 9 The predicted results using BP-based DNN algorithm for 
bead width

Fig. 10 The predicted results using BP-based DNN algorithm 
for bead height

Fig. 11 Comparison between the measured and predicted bead 
width from the developed BP-based DNN algorithm

Fig. 12 Comparison between the measured and predicted bead 
height from the developed BP-based DNN algorithm

Table 7 Performance of the developed DNN algorithm for bead 
geometry

Bead geometry PAM (%)
Bead width 96
Bead height 96
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the BP algorithm, which is the structure of the DNN 
algorithm. As a result, the correlation coefficient of bead 
widths R was 0.98911 when the hidden layer had seven 
neurons. For bead heights, R was 0.98992 when a hidden 
layer had eight neurons, indicating an optimal number of 
neurons.

(3) To confirm the reliability of the backpropagation 
(BP)-based DNN algorithm, the algorithm's predicted values 
were compared and analyzed with the measured values using 
PAM. As a result, the prediction accuracy of the developed 
algorithm was 96% for both bead width and height, 
confirming the efficiency of the developed BP-based DNN 
algorithm.

(4) The developed BP-based DNN algorithm can improve 
the quality and productivity of tandem welding of steel plates, 
which constitutes 70% of all welding processes.
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