한국생산제조학회 학술지 영문 홈페이지
[ Best Paper of This Month ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 27, No. 5, pp.391-400
ISSN: 2508-5107 (Online)
Print publication date 15 Oct 2018
Received 03 Apr 2018 Revised 01 Jun 2018 Accepted 03 Aug 2018
DOI: https://doi.org/10.7735/ksmte.2018.27.5.391

Topological Shape Optimization Based on Harmony Search Method

Seung-Min Leea ; Seog-Young Hana, *
aSchool of Mechanical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea

Correspondence to: *Tel.: +82-2-2220-0456 Fax: +82-2-2220-2299 E-mail address: syhan@hanyang.ac.kr (Seog-Young Han).

Abstract

A new topological shape optimization scheme based on the harmony search (HS) method is proposed, which provides an optimized structural shape for topology and shape optimization simultaneously via shape optimization only. The parameters of the HS method such as harmony memory considering rate, pitch adjusting rate, and band width for topological shape optimization are suggested. Additionally, new schemes such as boundary element index and pitch control number for more stable and robust optimized shape are implemented, and the results of the proposed algorithm are compared with those of the discrete level set method (LSM) for some numerical examples to verify the effectiveness and applicability. From these results, it is shown that objective values and optimized topological shape of the proposed algorithm are similar and convergence rate is improved at least 42% compared to those of the discrete LSM.

Keywords:

Harmony search, Shape optimization, Topological shape optimization, Boundary element index, Boundary elements

References

  • Munk, D. J., Vio, G. A., Steven, G. P., 2015, Topology and Shape Optimization Methods Using Evolutionary Algorithms: A Review, SMO, 52:3 613-631.
  • Pironneau, O., 1984, Optimal Shape Design for Elliptic Systems, Springer, Berlin. [https://doi.org/10.1007/978-3-642-87722-3]
  • Kikuchi, N., Chung, K. Y., Torigaki, T., Taylor, J. E., 1986, Adaptive Finite Element Methods for Shape Optimization of Linearly Elastic Structures, Comput. Methods Appl. Mech. Engrg., 57:1 67–91.
  • Botkin, M. E., Bennett, J. A., 1985, Shape Optimization of Three Dimensional Folded Shape Structures, AIAA J., 23:11 1804–1810.
  • Braibant, V., Fleury, C., 1984, Shape Optimal Designs Using b-splines, Comput. Methods Appl. Mech. Engrg., 44:3 247–267.
  • Bendsoe, M. P., Kikuchi, N., 1988, Generating Optimal Topologies in Structural Design Using a Homogenization Method, Comput. Methods Appl. Mech. Engrg., 71:2 197–224.
  • Bendsoe, M. P., 1989, Optimal Shape Design as a Material Distribution Problem, Struct. Multidiscip. Optim., 1:4 193–202.
  • Li, Q., Steven, G. P., Querin, O. M., Xie, Y. M., 1999, Evolutionary Shape Optimization for Stress Minimization, Mech. Res. Comm., 26:6 657-664.
  • Xie, Y. M., Steven, G. P., 1997, Evolutionary Structural Optimization, Springer. [https://doi.org/10.1007/978-1-4471-0985-3]
  • Querin, O. M., Steven, G. P., Xie, Y. M., 2000, Evolutionary Structural Optimisation Using an Additive Algorithm, Finite. Elem. Anal. Des., 34:3-4 291-308.
  • Huang, X., Xie, M., 2010, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications, John Wiley & Sons. [https://doi.org/10.1002/9780470689486]
  • Bourdin, B., Chambolle, A., 2003, Design-dependent Loads in Topology Optimization, ESAIM. COCV., 9 19-48. [https://doi.org/10.1051/cocv:2002070]
  • Sethian, J. A., Wiegmann, A., 2000, Structural Boundary Design Via Level Set and Immersed Interface Methods, J. Comput. Phys., 163:2 489-528.
  • Wang, M. Y., Wang, X., Guo, D., 2003, A Level Set Method for Structural Topology Optimization, Comput. Methods Appl. Mech. Engrg., 192:1-2 227-246.
  • Sethian, J. A., Osher, S., 1988, Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations, J. Comput. Phys., 79:1 12-49.
  • Allaire, G., Jouve, F., Toader, A. M., 2004, Structural Optimization Using Sensitivity Analysis and a Level-set Method, J. Comput. Phys., 194:1 363-393.
  • Challis, V. J., 2010, A Discrete Level-set Topology Optimization Code Written in Matlab, Struct. Multidiscip. Optim., 41:3 453-464.
  • Sigmund, O., Maute, K., 2013, Topology Optimization Approaches a Comparative Review, Struct. Multidiscip. Optim., 48 1031-1055. [https://doi.org/10.1007/s00158-013-0978-6]
  • Geem, Z. W., Kim, J. H., Loganathan, G., 2001, A New Heuristic Optimization Algorithm: Harmony Search, Simulation, 76:2 60-68.
  • Lee, K. S., Geem, Z. W., 2004, A New Structural Optimization Method Based on The Harmony Search Algorithm, Comput. Struct., 82:9-10 781-798.
  • Lee, K. S., Geem, Z. W., 2005, A New Meta-heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice, Comput. Methods Appl. Mech. Engrg., 194:36-38 3902-3933.
  • Martini, K., 2011, Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks, J. Struct. Eng., 137:11 1332-1339.
  • Paik, K., Jeong, J., Kim, J., 2001, Use of a Harmony Search for Optimal Design of Coffer Dam Drainage Pipes, Journal of the Korean Society of Civil Engineers, 21:2B 119-128.
  • Lee, S. M., Han, S. Y., 2014, Topology Optimization Scheme Based on Harmony Search Method, Proceedings of the KSMTE Autumn Conference, 98.
  • Lee, S. M., Han, S. Y., 2015, Topology Optimization for Dynamic Problem Using Harmony Search, Proceedings of the KSMTE Spring Conference, 199.
  • Lee, S. M., Han, S. Y., 2015, Shape Optimization Using Harmony Search, Proceedings of the KSMTE Spring Conference, 200.
  • Challis, V. J., 2010, A Discrete Level-set Topology Optimization Code Written in Matlab, Struct. Multidiscip. Optim., 41:3 453-464.
  • Kaveh, A., Hassani, B., Shojaee, S., Tavakkoli, S., 2008, Structural Topology Optimization Using Ant Colony Methodology, Eng. Struct., 30:9 2559-2565.
  • Park, J. Y., Han, S. Y., 2013, Swarm Intelligence Topology Optimization Based on Artificial Bee Colony Algorithm, Int. J. Precis. Eng. Manuf., 14:1 115-121.