절연파괴 현상을 구동력으로 하는 마이크로젯 인젝터 개발
Abstract
Drug delivery via microjets is a method that can potentially overcome the disadvantages of conventional needle injections. We implemented a microjet injection system that operates with spark-generated bubbles. The system consists of three components: a battery, power supply system, and microjet injector, which allows 10–20 discharges and microjet injections per second. In order to increase discharge efficiency, the circuit elements and electrode shapes were optimized and the flow inside the discharge chamber was operated to minimize the influence of metal colloids generated by electrode erosion. The microjet ejection was captured by a high-speed camera to correlate the energy of the spark discharge with microjet characteristics in order to make the system suitable for transdermal drug penetration.
Keywords:
Microjet, Dielectric breakdown, Spark discharge, Needle-free, Drug-deliveryAcknowledgments
이 논문은 2019년도 한화시스템(주) 의 재원을 지원받아 수행된 연구임.
References
- Kendall, M. A., 2010, Needle-free Vaccine Injection, Handbook of Experimental Pharm acology, 197:197 193-219. [https://doi.org/10.1007/978-3-642-00477-3_7]
- Jang, H. J., Hur, E., Kim, Y. K, Lee, S. H., Kang, N. G., Yoh, J. J., 2014, Laser-induced Microjet Injection into Preablated Skin for More Effective Transdermal Drug Delivery, J. Biomed. Opt., 19:11 118002. [https://doi.org/10.1117/1.JBO.19.11.118002]
- Jang, H. S., Yeo, S. G., Yoh, J. J., 2017, Skin Pre‐ablation and Laser Assisted Microjet Injection for Deep Tissue Penetration, Las. Surg. Med., 49:4 387-394. [https://doi.org/10.1002/lsm.22608]
- Jang, H. S., Yeo, S. G., Yoh, J. J., 2016, Synchronization of Skin Ablation and Microjet Injection for an Effective Transdermal Drug Delivery, Appl. Phys. A, 122:4 1-8. [https://doi.org/10.1007/s00339-016-9941-x]
- Jang, H. J., Hur, E., Kim, Y. K., Lee, S. H., Gang, N. G., Yoh, J. J., 2014, Towards Clinical Use of a Laser-induced Microjet System Aimed at Reliable and Safe Drug Delivery, J, Biomed. Opt., 19:5 058001. [https://doi.org/10.1117/1.JBO.19.5.058001]
- Hontañón, E., Palomares, J. M., Stein, M., Guo, X., Engeln, R., Nirschl, H., Kruis, F. E., 2013, The Transition from Spark to Arc Discharge and its Implications with Respect to Nanoparticle Production, J. Nanopart. Res., 15:9 1-19. [https://doi.org/10.1007/s11051-013-1957-y]
- Timoshkin, I. V., Fouracre, R. A., Given , M. J., MacGregor, S. J, 2006, Hydrodynamic Modelling of Transient Cavities in Fluids Generated by High Voltage Spark Discharges, J. Phys. D: Appl. Phys., 39:22 4808-4817. [https://doi.org/10.1088/0022-3727/39/22/011]
- Mackersie, J. W., Timoshkin, I. V., MacGregor, S. J., 2005, Generation of High-power Ultrasound by Spark Discharges in Water, IEEE Transac. Plasm. Sci., 33:5 1715-1724. [https://doi.org/10.1109/TPS.2005.856411]
- Vokurka, K., Plocek, J., 2013, Experimental Study of the Thermal Behavior of Spark Generated Bubbles in Water, Exp. Therm. Fluid Sci., 51 84-93. [https://doi.org/10.1016/j.expthermflusci.2013.07.004]
- Dadvand, A., Khoo, B.C., Shervani-Tabar, M. T., 2009, A Collapsing Bubble-induced Microinjector: An Experimental Study, Exp. Fluid, 46:3 419-434. [https://doi.org/10.1007/s00348-008-0568-3]
- Turangan, C. K., Ong, G. P., Klaseboer, E., Khoo, B, C., 2006, Experimental and Numerical Study of Transient Bubble-elastic Membrane Interaction, J. Appl. Phys., 100:5 054910. [https://doi.org/10.1063/1.2338125]
- Gong, S. W., Ohl, S. W., Klaseboer, E., Khoo, B. C., 2012, Interaction of a Spark-generated Bubble with a Rubber Beam: Numerical and Experimental Study, Phys. Rev. E, 86:2 026307. [https://doi.org/10.1103/PhysRevE.86.026307]
- Buogo, S., Plocek, J., Vokurka, K., 2009, Efficiency of Energy Conversion in Underwater Spark Discharges and Associated Bubble Oscillations: Experimental Results, Acta Acust. United Ac., 95:1 46-59. [https://doi.org/10.3813/AAA.918126]
- Buogo, S., Cannelli, G. B., 2002, Implosion of an Underwater Spark-generated Bubble and Acoustic Energy Evaluation Using the Rayleigh Model, J, Acous. Soc. Am., 111:6 2594-2600. [https://doi.org/10.1121/1.1476919]
- Gong, S. W., Ohl, S. W., Klaseboer, E., Khoo, B. C., 2010, Scaling Law for Bubbles Induced by Different External Sources: Theoretical and Experimental Study, Phys. Rev. E, 2010, 81:5 056317. [https://doi.org/10.1103/PhysRevE.81.056317]
- Li, X. D., Liu, Y., Liu, S. W., Li, Z. Y., Zhou, G. Y., Li, H., Lin, F. C., Pan, Y., 2016, Influence of Deposited Energy on Shock Wave Induced by Underwater Pulsed Current Discharge, Phys. Plasm. 23:10 103104. [https://doi.org/10.1063/1.4964663]
- Bane, S. P., Ziegler, J. L., Shepherd, J. E., 2015, Investigation of the Effect of Electrode Geometry on Spark Ignition, Comb. Flame, 162:2 462-469. [https://doi.org/10.1016/j.combustflame.2014.07.017]
- Rizvi, S. A. H., Smy, P. R., 1992, Characteristics of Incendive and Non-incendive Spark Discharges from the Surface of a Charged Insulator, J. Electros., 27:3 267-282. [https://doi.org/10.1016/0304-3886(92)90019-P]
- Rond, C., Desse, J. M., Fagnon, N., Aubert, X., Vega, A., Duten, X., 2018, Influence of Applied Voltage and Electrical Conductivity on Underwater Pin-to-pin Pulsed Discharge, J. Phys. D: Appl. Phys., 52:2 025202. [https://doi.org/10.1088/1361-6463/aae681]
- B&B Systems, n.d., veiwed 6 December 2019, <http://www.bnbsys.co.kr/index.php?q=02110, >.
Ph.D. Candidate in the Department of Mechanical & Aerospace Engineering, Seoul National University.His research interest is underwater spark discharge and pulsed flow.
E-mail: hamn2012@snu.ac.kr
Visiting researcher in the Institute of Advanced Machines and Design, Seoul National University.He is interested in high voltage physics, biomedical engineering and fabrication of IoT devices.
E-mail: udtseal48130@snu.ac.kr
Senior Engineer in Land R&D Center, Hanwha System.
E-mail: skyook@hanwha.com
Professor in the Department of Mechanical & Aerospace Engineering, Seoul National University.His research interest includes physics of matters at extreme states.
E-mail: jjyoh@snu.ac.kr