한국생산제조학회 학술지 영문 홈페이지

Journal Archive

Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28 , No. 2

[ Technical Papers ]
Journal of the Korean Society of Manufacturing Technology Engineers - Vol. 28, No. 2, pp. 132-138
Abbreviation: J. Korean Soc. Manuf. Technol. Eng.
ISSN: 2508-5107 (Online)
Print publication date 15 Apr 2019
Received 26 Nov 2018 Revised 14 Jan 2019 Accepted 25 Jan 2019
DOI: https://doi.org/10.7735/ksmte.2019.28.2.132

광픽업 유닛 기반 원자현미경의 Dynamic 모드 측정용 Lock-in Amplifier
Mark A. Cruza ; 송수환b ; 이상헌c, *

Lock-in Amplifier for Dynamic Imaging of OPU Based Atomic Force Microscopy
Mark A. Cruza ; Su-Hwan Songb ; Sang Heon Leec, *
aDepartment of Engineering, Aurora State College of Technology, Sitio Dicaloyungan, Brgy. Zabali Baler, Aurora3200, Philippines
bKorea Institute of Robot & Convergence, 1486-18, Gyungdong-ro, Andong, Gyeongbuk-do, 36728, Korea
cDepartment of Mechanical Design Engineering, Andong National University, 1375, Gyungdong-ro, Andong, Gyeongbuk-do, 36729, Korea
Correspondence to : *Tel.: +82-54-820-5908 Fax: +82-54-820-7913 E-mail address: shlee@andong.ac.kr (Sang Heon Lee).

Funding Information ▼

Abstract

In this paper, we introduce a lock-in amplifier for the dynamic mode operation of atomic force microscopy, based on the optical pickup unit of a DVD. We fabricated a lock-in amplifier, which is fundamentally based on the principle of the dual phase mode, and included an additional enhancement structure to ensure high bandwidth, so that it is capable of supporting high-speed scanning probe microcopy in the future. We performed a basic experiment for performance evaluation and dynamic mode imaging of a standard sample by applying the fabricated lock-in amplifier module to a pre-developed optical pickup unit based atomic force microscopy.


Keywords: Lock-in amplifier, Displacement sensor, Atomic force microscopy, Scanning probe microscopy, Dynamic imaging mode

Acknowledgments

이 논문은 2016년도 안동대학교 연구비에 의해 연구되었음.


References
1. Binnig, G., Quate, C. F., Gerber, C., 1986, Atomic Force Microscope, Phys. Rev. Lett. 56, 930-933.
2. Quercioli, F., Tiribilli, B., Ascoli, C., Baschieri, P., Frediani, C., 1999, Monitoring of an Atomic Force Microscope Cantilever with a Compact Disk Pickup, Rev. Sci. Instrum. 70, 3620.
3. Lee, S. H., Kim, H. C., Jung, K. S., 2011, Atomic Force Microscopy using Optical Pickup Head to Measure Cantilever Displacement, Int. J. Precis. Eng. Manuf. 12, 913-916.
4. Lee, S. H., 2012, High Precision Deflection Measurement of Microcantilever in an Optical Pickup Head based Atomic Force Microscopy, Rev. Sci. Instrum. 83, 113703.
5. Lee, S. H., 2015, Note: Compact and Light Displacement Sensor for a Precision Measurement System in Large Motion, Rev. Sci. Instrum. 86, 086103.
6. Eaton, P., West, P., 2010, Atomic Force Microscopy, Oxford University Press, Oxford, UK.
7. Kitchin, C., Counts, L., 1986, RMS to DC Conversion Application Guide, 2nd ed., Analog Devices, Inc., USA.
8. Garcia, R., Proksch, R., 2013, Nanomechanical Mapping of Soft Matter by Bimodal Force Microscopy, Eur. Polym. J. 49, 1897-1906.
9. Karvinen, K. S., Moheimani, S. O. R., 2014, A High-Bandwidth Amplitude Estimation Technique for Dynamic Mode Atomic Force Microscopy, Rev. Sci. Instrum. 85, 023707.
10. Song, S. H., 2016, Design and Control of Optical Pick-up Unit based Probe Head for Atomic Force Microscopy, Master Thesis, Andong National University, Republic of Korea.